【深度学习实验】NumPy的简单用法

目录

一、NumPy介绍

[1. 官网](#1. 官网)

[2. 官方教程](#2. 官方教程)

二、实验内容

[1. 导入numpy库](#1. 导入numpy库)

[2. 打印版本号](#2. 打印版本号)

[3. arange 函数](#3. arange 函数)

[4. array函数](#4. array函数)

[5. reshape函数](#5. reshape函数)

[6. 矩阵点乘(逐元素相乘)](#6. 矩阵点乘(逐元素相乘))

[7. 矩阵乘法](#7. 矩阵乘法)


一、NumPy介绍

NumPy是一个常用于科学计算的Python库,尤其在深度学习和机器学习中应用广泛。

1. 官网

NumPyhttps://numpy.org/

2. 官方教程

NumPy:初学者的绝对基础知识 --- NumPy v1.25 手册https://numpy.org/doc/stable/user/absolute_beginners.html

二、实验内容

1. 导入numpy库

  • Import numpy library (you should follow the standard NumPy conventions).

导入 numpy 库(应该遵循标准的 NumPy 约定)。

python 复制代码
import numpy as np

2. 打印版本号

  • Print the version number of NumPy.

打印 NumPy 的版本号。

python 复制代码
print(np.__version__)

3. arange 函数

  • Use the arange function to generate 10 elements from 0 to 9 and store them in a variable named ndarray.

使用 arange 函数生成 10 个从 0 到 9 的元素,并将它们存储在名为 ndarray 的变量中。

python 复制代码
ndarray = np.arange(10)
print(ndarray)

4. array函数

  • Utilize the array function to convert data in Python list format into an equivalent ndarray named ndarray1.

利用array函数将 Python 列表格式的数据转换为名为 ndarray1 的等效 ndarray。

python 复制代码
ndarray1 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(ndarray1)

5. reshape函数

  • Reshape the ndarray and the ndarray1 into a 2-row by 5-column array.

将 ndarray 和 ndarray1 改造成 2 行 x 5 列数组。

python 复制代码
ndarray = ndarray.reshape(2, 5)
ndarray1 = ndarray1.reshape(2, 5)
print(ndarray)
print(ndarray1)

6. 矩阵点乘( 逐元素相乘)

  • Calculate the elementwise product of ndarray and ndarray1 using the * operator, and print the result

使用 * 运算符计算 ndarray 和 ndarray1 的元素乘积,并打印结果

python 复制代码
result = ndarray * ndarray1
print(result)

7. 矩阵乘法

  • Calculate the matrix product of ndarray and ndarray1 using the @ operator, and print the result. You need to use the T attribute to perform a transpose operation on ndarray1.

使用 @ 运算符计算 ndarray 和 ndarray1 的矩阵乘积,并打印结果。需要使用 T 属性在 ndarray1 上执行转置操作。

python 复制代码
result1 = ndarray @ ndarray1.T
print(result1)
相关推荐
Codebee35 分钟前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys1 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56781 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子1 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder2 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert