【深度学习实验】NumPy的简单用法

目录

一、NumPy介绍

[1. 官网](#1. 官网)

[2. 官方教程](#2. 官方教程)

二、实验内容

[1. 导入numpy库](#1. 导入numpy库)

[2. 打印版本号](#2. 打印版本号)

[3. arange 函数](#3. arange 函数)

[4. array函数](#4. array函数)

[5. reshape函数](#5. reshape函数)

[6. 矩阵点乘(逐元素相乘)](#6. 矩阵点乘(逐元素相乘))

[7. 矩阵乘法](#7. 矩阵乘法)


一、NumPy介绍

NumPy是一个常用于科学计算的Python库,尤其在深度学习和机器学习中应用广泛。

1. 官网

NumPyhttps://numpy.org/

2. 官方教程

NumPy:初学者的绝对基础知识 --- NumPy v1.25 手册https://numpy.org/doc/stable/user/absolute_beginners.html

二、实验内容

1. 导入numpy库

  • Import numpy library (you should follow the standard NumPy conventions).

导入 numpy 库(应该遵循标准的 NumPy 约定)。

python 复制代码
import numpy as np

2. 打印版本号

  • Print the version number of NumPy.

打印 NumPy 的版本号。

python 复制代码
print(np.__version__)

3. arange 函数

  • Use the arange function to generate 10 elements from 0 to 9 and store them in a variable named ndarray.

使用 arange 函数生成 10 个从 0 到 9 的元素,并将它们存储在名为 ndarray 的变量中。

python 复制代码
ndarray = np.arange(10)
print(ndarray)

4. array函数

  • Utilize the array function to convert data in Python list format into an equivalent ndarray named ndarray1.

利用array函数将 Python 列表格式的数据转换为名为 ndarray1 的等效 ndarray。

python 复制代码
ndarray1 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(ndarray1)

5. reshape函数

  • Reshape the ndarray and the ndarray1 into a 2-row by 5-column array.

将 ndarray 和 ndarray1 改造成 2 行 x 5 列数组。

python 复制代码
ndarray = ndarray.reshape(2, 5)
ndarray1 = ndarray1.reshape(2, 5)
print(ndarray)
print(ndarray1)

6. 矩阵点乘( 逐元素相乘)

  • Calculate the elementwise product of ndarray and ndarray1 using the * operator, and print the result

使用 * 运算符计算 ndarray 和 ndarray1 的元素乘积,并打印结果

python 复制代码
result = ndarray * ndarray1
print(result)

7. 矩阵乘法

  • Calculate the matrix product of ndarray and ndarray1 using the @ operator, and print the result. You need to use the T attribute to perform a transpose operation on ndarray1.

使用 @ 运算符计算 ndarray 和 ndarray1 的矩阵乘积,并打印结果。需要使用 T 属性在 ndarray1 上执行转置操作。

python 复制代码
result1 = ndarray @ ndarray1.T
print(result1)
相关推荐
随机惯性粒子群4 分钟前
mujoco graspnet 仿真项目的复现记录
python·机器学习·机械臂·graspnet·mujcoo
chase。10 分钟前
机器人零位标定修正流程介绍
人工智能·算法·机器人
阿明观察13 分钟前
聚焦AI与大模型创新,紫光云如何引领云计算行业快速演进?
人工智能·云计算
罗西的思考18 分钟前
探秘Transformer系列之(26)--- KV Cache优化 之 PD分离or合并
人工智能
Json_1817901448034 分钟前
亚马逊Amazon商品详情API接口概述,json数据示例返回(测试)
开发语言·python
小马过河R39 分钟前
通俗理解CLIP模型如何实现图搜图乃至文搜图
人工智能·深度学习·机器学习·语言模型·nlp
KarudoLee41 分钟前
AIGC6——AI的哲学困境:主体性、认知边界与“天人智一“的再思考
人工智能
xcLeigh1 小时前
计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet
人工智能·计算机视觉·ai·cnn·卷积神经网络
azoo1 小时前
jupyter notebook 无法启动- markupsafe导致
ide·人工智能·jupyter
测试杂货铺1 小时前
软件测试之功能测试详解
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例