用深度强化学习来玩Chrome小恐龙快跑

目录

实机演示

代码实现


实机演示

用深度强化学习来玩Chrome小恐龙快跑

代码实现

python 复制代码
import os
import cv2
from pygame import RLEACCEL
from pygame.image import load
from pygame.sprite import Sprite, Group, collide_mask
from pygame import Rect, init, time, display, mixer, transform, Surface
from pygame.surfarray import array3d
import torch
from random import randrange, choice
import numpy as np

mixer.pre_init(44100, -16, 2, 2048)
init()

scr_size = (width, height) = (600, 150)
FPS = 60
gravity = 0.6

black = (0, 0, 0)
white = (255, 255, 255)
background_col = (235, 235, 235)

high_score = 0

screen = display.set_mode(scr_size)
clock = time.Clock()
display.set_caption("T-Rex Rush")


def load_image(
        name,
        sizex=-1,
        sizey=-1,
        colorkey=None,
):
    fullname = os.path.join("assets/sprites", name)
    image = load(fullname)
    image = image.convert()
    if colorkey is not None:
        if colorkey is -1:
            colorkey = image.get_at((0, 0))
        image.set_colorkey(colorkey, RLEACCEL)

    if sizex != -1 or sizey != -1:
        image = transform.scale(image, (sizex, sizey))

    return (image, image.get_rect())


def load_sprite_sheet(
        sheetname,
        nx,
        ny,
        scalex=-1,
        scaley=-1,
        colorkey=None,
):
    fullname = os.path.join("assets/sprites", sheetname)
    sheet = load(fullname)
    sheet = sheet.convert()

    sheet_rect = sheet.get_rect()

    sprites = []

    sizey = sheet_rect.height / ny
    if isinstance(nx, int):
        sizex = sheet_rect.width / nx
        for i in range(0, ny):
            for j in range(0, nx):
                rect = Rect((j * sizex, i * sizey, sizex, sizey))
                image = Surface(rect.size)
                image = image.convert()
                image.blit(sheet, (0, 0), rect)

                if colorkey is not None:
                    if colorkey is -1:
                        colorkey = image.get_at((0, 0))
                    image.set_colorkey(colorkey, RLEACCEL)

                if scalex != -1 or scaley != -1:
                    image = transform.scale(image, (scalex, scaley))

                sprites.append(image)

    else:  #list
        sizex_ls = [sheet_rect.width / i_nx for i_nx in nx]
        for i in range(0, ny):
            for i_nx, sizex, i_scalex in zip(nx, sizex_ls, scalex):
                for j in range(0, i_nx):
                    rect = Rect((j * sizex, i * sizey, sizex, sizey))
                    image = Surface(rect.size)
                    image = image.convert()
                    image.blit(sheet, (0, 0), rect)

                    if colorkey is not None:
                        if colorkey is -1:
                            colorkey = image.get_at((0, 0))
                        image.set_colorkey(colorkey, RLEACCEL)

                    if i_scalex != -1 or scaley != -1:
                        image = transform.scale(image, (i_scalex, scaley))

                    sprites.append(image)

    sprite_rect = sprites[0].get_rect()

    return sprites, sprite_rect


def extractDigits(number):
    if number > -1:
        digits = []
        i = 0
        while (number / 10 != 0):
            digits.append(number % 10)
            number = int(number / 10)

        digits.append(number % 10)
        for i in range(len(digits), 5):
            digits.append(0)
        digits.reverse()
        return digits


def pre_processing(image, w=84, h=84):
    image = image[:300, :, :]
    # cv2.imwrite("ori.jpg", image)
    image = cv2.cvtColor(cv2.resize(image, (w, h)), cv2.COLOR_BGR2GRAY)
    # cv2.imwrite("color.jpg", image)
    _, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
    # cv2.imwrite("bw.jpg", image)

    return image[None, :, :].astype(np.float32)


class Dino():
    def __init__(self, sizex=-1, sizey=-1):
        self.images, self.rect = load_sprite_sheet("dino.png", 5, 1, sizex, sizey, -1)
        self.images1, self.rect1 = load_sprite_sheet("dino_ducking.png", 2, 1, 59, sizey, -1)
        self.rect.bottom = int(0.98 * height)
        self.rect.left = width / 15
        self.image = self.images[0]
        self.index = 0
        self.counter = 0
        self.score = 0
        self.isJumping = False
        self.isDead = False
        self.isDucking = False
        self.isBlinking = False
        self.movement = [0, 0]
        self.jumpSpeed = 11.5

        self.stand_pos_width = self.rect.width
        self.duck_pos_width = self.rect1.width

    def draw(self):
        screen.blit(self.image, self.rect)

    def checkbounds(self):
        if self.rect.bottom > int(0.98 * height):
            self.rect.bottom = int(0.98 * height)
            self.isJumping = False

    def update(self):
        if self.isJumping:
            self.movement[1] = self.movement[1] + gravity

        if self.isJumping:
            self.index = 0
        elif self.isBlinking:
            if self.index == 0:
                if self.counter % 400 == 399:
                    self.index = (self.index + 1) % 2
            else:
                if self.counter % 20 == 19:
                    self.index = (self.index + 1) % 2

        elif self.isDucking:
            if self.counter % 5 == 0:
                self.index = (self.index + 1) % 2
        else:
            if self.counter % 5 == 0:
                self.index = (self.index + 1) % 2 + 2

        if self.isDead:
            self.index = 4

        if not self.isDucking:
            self.image = self.images[self.index]
            self.rect.width = self.stand_pos_width
        else:
            self.image = self.images1[(self.index) % 2]
            self.rect.width = self.duck_pos_width

        self.rect = self.rect.move(self.movement)
        self.checkbounds()

        if not self.isDead and self.counter % 7 == 6 and self.isBlinking == False:
            self.score += 1

        self.counter = (self.counter + 1)


class Cactus(Sprite):
    def __init__(self, speed=5, sizex=-1, sizey=-1):
        Sprite.__init__(self, self.containers)
        self.images, self.rect = load_sprite_sheet("cacti-small.png", [2, 3, 6], 1, sizex, sizey, -1)
        self.rect.bottom = int(0.98 * height)
        self.rect.left = width + self.rect.width
        self.image = self.images[randrange(0, 11)]
        self.movement = [-1 * speed, 0]

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        self.rect = self.rect.move(self.movement)

        if self.rect.right < 0:
            self.kill()


class Ptera(Sprite):
    def __init__(self, speed=5, sizex=-1, sizey=-1):
        Sprite.__init__(self, self.containers)
        self.images, self.rect = load_sprite_sheet("ptera.png", 2, 1, sizex, sizey, -1)
        self.ptera_height = [height * 0.82, height * 0.75, height * 0.60, height * 0.48]
        self.rect.centery = self.ptera_height[randrange(0, 4)]
        self.rect.left = width + self.rect.width
        self.image = self.images[0]
        self.movement = [-1 * speed, 0]
        self.index = 0
        self.counter = 0

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        if self.counter % 10 == 0:
            self.index = (self.index + 1) % 2
        self.image = self.images[self.index]
        self.rect = self.rect.move(self.movement)
        self.counter = (self.counter + 1)
        if self.rect.right < 0:
            self.kill()


class Ground():
    def __init__(self, speed=-5):
        self.image, self.rect = load_image("ground.png", -1, -1, -1)
        self.image1, self.rect1 = load_image("ground.png", -1, -1, -1)
        self.rect.bottom = height
        self.rect1.bottom = height
        self.rect1.left = self.rect.right
        self.speed = speed

    def draw(self):
        screen.blit(self.image, self.rect)
        screen.blit(self.image1, self.rect1)

    def update(self):
        self.rect.left += self.speed
        self.rect1.left += self.speed

        if self.rect.right < 0:
            self.rect.left = self.rect1.right

        if self.rect1.right < 0:
            self.rect1.left = self.rect.right


class Cloud(Sprite):
    def __init__(self, x, y):
        Sprite.__init__(self, self.containers)
        self.image, self.rect = load_image("cloud.png", int(90 * 30 / 42), 30, -1)
        self.speed = 1
        self.rect.left = x
        self.rect.top = y
        self.movement = [-1 * self.speed, 0]

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        self.rect = self.rect.move(self.movement)
        if self.rect.right < 0:
            self.kill()


class Scoreboard():
    def __init__(self, x=-1, y=-1):
        self.score = 0
        self.tempimages, self.temprect = load_sprite_sheet("numbers.png", 12, 1, 11, int(11 * 6 / 5), -1)
        self.image = Surface((55, int(11 * 6 / 5)))
        self.rect = self.image.get_rect()
        if x == -1:
            self.rect.left = width * 0.89
        else:
            self.rect.left = x
        if y == -1:
            self.rect.top = height * 0.1
        else:
            self.rect.top = y

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self, score):
        score_digits = extractDigits(score)
        self.image.fill(background_col)
        if len(score_digits) == 6:
            score_digits = score_digits[1:]
        for s in score_digits:
            self.image.blit(self.tempimages[s], self.temprect)
            self.temprect.left += self.temprect.width
        self.temprect.left = 0


class ChromeDino(object):
    def __init__(self):
        self.gamespeed = 5
        self.gameOver = False
        self.gameQuit = False
        self.playerDino = Dino(44, 47)
        self.new_ground = Ground(-1 * self.gamespeed)
        self.scb = Scoreboard()
        self.highsc = Scoreboard(width * 0.78)
        self.counter = 0

        self.cacti = Group()
        self.pteras = Group()
        self.clouds = Group()
        self.last_obstacle = Group()

        Cactus.containers = self.cacti
        Ptera.containers = self.pteras
        Cloud.containers = self.clouds

        self.retbutton_image, self.retbutton_rect = load_image("replay_button.png", 35, 31, -1)
        self.gameover_image, self.gameover_rect = load_image("game_over.png", 190, 11, -1)

        self.temp_images, self.temp_rect = load_sprite_sheet("numbers.png", 12, 1, 11, int(11 * 6 / 5), -1)
        self.HI_image = Surface((22, int(11 * 6 / 5)))
        self.HI_rect = self.HI_image.get_rect()
        self.HI_image.fill(background_col)
        self.HI_image.blit(self.temp_images[10], self.temp_rect)
        self.temp_rect.left += self.temp_rect.width
        self.HI_image.blit(self.temp_images[11], self.temp_rect)
        self.HI_rect.top = height * 0.1
        self.HI_rect.left = width * 0.73

    def step(self, action, record=False):  # 0: Do nothing. 1: Jump. 2: Duck
        reward = 0.1
        if action == 0:
            reward += 0.01
            self.playerDino.isDucking = False
        elif action == 1:
            self.playerDino.isDucking = False
            if self.playerDino.rect.bottom == int(0.98 * height):
                self.playerDino.isJumping = True
                self.playerDino.movement[1] = -1 * self.playerDino.jumpSpeed

        elif action == 2:
            if not (self.playerDino.isJumping and self.playerDino.isDead) and self.playerDino.rect.bottom == int(
                    0.98 * height):
                self.playerDino.isDucking = True

        for c in self.cacti:
            c.movement[0] = -1 * self.gamespeed
            if collide_mask(self.playerDino, c):
                self.playerDino.isDead = True
                reward = -1
                break
            else:
                if c.rect.right < self.playerDino.rect.left < c.rect.right + self.gamespeed + 1:
                    reward = 1
                    break

        for p in self.pteras:
            p.movement[0] = -1 * self.gamespeed
            if collide_mask(self.playerDino, p):
                self.playerDino.isDead = True
                reward = -1
                break
            else:
                if p.rect.right < self.playerDino.rect.left < p.rect.right + self.gamespeed + 1:
                    reward = 1
                    break

        if len(self.cacti) < 2:
            if len(self.cacti) == 0 and len(self.pteras) == 0:
                self.last_obstacle.empty()
                self.last_obstacle.add(Cactus(self.gamespeed, [60, 40, 20], choice([40, 45, 50])))
            else:
                for l in self.last_obstacle:
                    if l.rect.right < width * 0.7 and randrange(0, 50) == 10:
                        self.last_obstacle.empty()
                        self.last_obstacle.add(Cactus(self.gamespeed, [60, 40, 20], choice([40, 45, 50])))

        # if len(self.pteras) == 0 and randrange(0, 200) == 10 and self.counter > 500:
        if len(self.pteras) == 0 and len(self.cacti) < 2 and randrange(0, 50) == 10 and self.counter > 500:
            for l in self.last_obstacle:
                if l.rect.right < width * 0.8:
                    self.last_obstacle.empty()
                    self.last_obstacle.add(Ptera(self.gamespeed, 46, 40))

        if len(self.clouds) < 5 and randrange(0, 300) == 10:
            Cloud(width, randrange(height / 5, height / 2))

        self.playerDino.update()
        self.cacti.update()
        self.pteras.update()
        self.clouds.update()
        self.new_ground.update()
        self.scb.update(self.playerDino.score)

        state = display.get_surface()
        screen.fill(background_col)
        self.new_ground.draw()
        self.clouds.draw(screen)
        self.scb.draw()
        self.cacti.draw(screen)
        self.pteras.draw(screen)
        self.playerDino.draw()

        display.update()
        clock.tick(FPS)

        if self.playerDino.isDead:
            self.gameOver = True

        self.counter = (self.counter + 1)

        if self.gameOver:
            self.__init__()

        state = array3d(state)
        if record:
            return torch.from_numpy(pre_processing(state)), np.transpose(
                cv2.cvtColor(state, cv2.COLOR_RGB2BGR), (1, 0, 2)), reward, not (reward > 0)
        else:
            return torch.from_numpy(pre_processing(state)), reward, not (reward > 0)
python 复制代码
import torch.nn as nn

class DeepQNetwork(nn.Module):
    def __init__(self):
        super(DeepQNetwork, self).__init__()

        self.conv1 = nn.Sequential(nn.Conv2d(4, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True))
        self.conv3 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True))

        self.fc1 = nn.Sequential(nn.Linear(7 * 7 * 64, 512), nn.ReLU(inplace=True))
        self.fc2 = nn.Linear(512, 3)
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                nn.init.uniform_(m.weight, -0.01, 0.01)
                nn.init.constant_(m.bias, 0)

    def forward(self, input):
        output = self.conv1(input)
        output = self.conv2(output)
        output = self.conv3(output)
        output = output.view(output.size(0), -1)
        output = self.fc1(output)
        output = self.fc2(output)

        return output
python 复制代码
import argparse
import torch

from src.model import DeepQNetwork
from src.env import ChromeDino
import cv2


def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Chrome Dino""")
    parser.add_argument("--saved_path", type=str, default="trained_models")
    parser.add_argument("--fps", type=int, default=60, help="frames per second")
    parser.add_argument("--output", type=str, default="output/chrome_dino.mp4", help="the path to output video")

    args = parser.parse_args()
    return args


def q_test(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    checkpoint_path = "{}/chrome_dino.pth".format(opt.saved_path)
    checkpoint = torch.load(checkpoint_path)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    env = ChromeDino()
    state, raw_state, _, _ = env.step(0, True)
    state = torch.cat(tuple(state for _ in range(4)))[None, :, :, :]
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()
    out = cv2.VideoWriter(opt.output, cv2.VideoWriter_fourcc(*"MJPG"), opt.fps, (600, 150))
    done = False
    while not done:
        prediction = model(state)[0]
        action = torch.argmax(prediction).item()
        next_state, raw_next_state, reward, done = env.step(action, True)
        out.write(raw_next_state)
        if torch.cuda.is_available():
            next_state = next_state.cuda()
        next_state = torch.cat((state[0, 1:, :, :], next_state))[None, :, :, :]
        state = next_state



if __name__ == "__main__":
    opt = get_args()
    q_test(opt)
python 复制代码
import argparse
import os
from random import random, randint, sample
import pickle
import numpy as np
import torch
import torch.nn as nn

from src.model import DeepQNetwork
from src.env import ChromeDino


def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Chrome Dino""")
    parser.add_argument("--batch_size", type=int, default=64, help="The number of images per batch")
    parser.add_argument("--optimizer", type=str, choices=["sgd", "adam"], default="adam")
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--initial_epsilon", type=float, default=0.1)
    parser.add_argument("--final_epsilon", type=float, default=1e-4)
    parser.add_argument("--num_decay_iters", type=float, default=2000000)
    parser.add_argument("--num_iters", type=int, default=2000000)
    parser.add_argument("--replay_memory_size", type=int, default=50000,
                        help="Number of epoches between testing phases")
    parser.add_argument("--saved_folder", type=str, default="trained_models")

    args = parser.parse_args()
    return args


def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    if torch.cuda.is_available():
        model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    if not os.path.isdir(opt.saved_folder):
        os.makedirs(opt.saved_folder)
    checkpoint_path = os.path.join(opt.saved_folder, "chrome_dino.pth")
    memory_path = os.path.join(opt.saved_folder, "replay_memory.pkl")
    if os.path.isfile(checkpoint_path):
        checkpoint = torch.load(checkpoint_path)
        iter = checkpoint["iter"] + 1
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        print("Load trained model from iteration {}".format(iter))
    else:
        iter = 0
    if os.path.isfile(memory_path):
        with open(memory_path, "rb") as f:
            replay_memory = pickle.load(f)
        print("Load replay memory")
    else:
        replay_memory = []
    criterion = nn.MSELoss()
    env = ChromeDino()
    state, _, _ = env.step(0)
    state = torch.cat(tuple(state for _ in range(4)))[None, :, :, :]
    while iter < opt.num_iters:
        if torch.cuda.is_available():
            prediction = model(state.cuda())[0]
        else:
            prediction = model(state)[0]
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
                max(opt.num_decay_iters - iter, 0) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_iters)
        u = random()
        random_action = u <= epsilon
        if random_action:
            action = randint(0, 2)
        else:
            action = torch.argmax(prediction).item()

        next_state, reward, done = env.step(action)
        next_state = torch.cat((state[0, 1:, :, :], next_state))[None, :, :, :]
        replay_memory.append([state, action, reward, next_state, done])
        if len(replay_memory) > opt.replay_memory_size:
            del replay_memory[0]
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = zip(*batch)

        state_batch = torch.cat(tuple(state for state in state_batch))
        action_batch = torch.from_numpy(
            np.array([[1, 0, 0] if action == 0 else [0, 1, 0] if action == 1 else [0, 0, 1] for action in
                      action_batch], dtype=np.float32))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.cat(tuple(state for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            action_batch = action_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        current_prediction_batch = model(state_batch)
        next_prediction_batch = model(next_state_batch)

        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * torch.max(prediction) for reward, done, prediction in
                  zip(reward_batch, done_batch, next_prediction_batch)))

        q_value = torch.sum(current_prediction_batch * action_batch, dim=1)
        optimizer.zero_grad()
        loss = criterion(q_value, y_batch)
        loss.backward()
        optimizer.step()

        state = next_state
        iter += 1
        print("Iteration: {}/{}, Loss: {:.5f}, Epsilon {:.5f}, Reward: {}".format(
            iter + 1,
            opt.num_iters,
            loss,
            epsilon, reward))
        if (iter + 1) % 50000 == 0:
            checkpoint = {"iter": iter,
                          "model_state_dict": model.state_dict(),
                          "optimizer": optimizer.state_dict()}
            torch.save(checkpoint, checkpoint_path)
            with open(memory_path, "wb") as f:
                pickle.dump(replay_memory, f, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
    opt = get_args()
    train(opt)
相关推荐
飏旎几秒前
Vue中computed和watch的区别
前端·javascript·vue.js
绍棠1 分钟前
uniapp转app时,cover-view的坑
前端·javascript·uni-app
音视频牛哥3 分钟前
低延迟 × 高识别:直播SDK与YOLO的融合应用架构解析
人工智能·opencv·计算机视觉
_码农121385 分钟前
java web 未完成项目,本来想做个超市管理系统,前端技术还没学。前端是个简单的html。后端接口比较完善。
java·前端·html
机器之心6 分钟前
科研写作神器,超越Mathpix的科学公式提取工具已开源
人工智能·openai
CodeCraft Studio10 分钟前
DHTMLX重磅发布React Scheduler组件,赋能日程管理开发!
前端·react.js·前端框架·dhtmlx·调度·scheduler·排程
张较瘦_13 分钟前
[论文阅读] 人工智能 + 教学 | 从代码到职业:用机器学习预测竞赛程序员的就业潜力
论文阅读·人工智能·机器学习
神经星星15 分钟前
【TVM 教程】向 Relay 中添加算子
人工智能·开源·编程语言
AKA大佬19 分钟前
学习vue2的准备工作-脚手架创建一个简单的vue2项目
前端·vue.js
Antonio91525 分钟前
【音视频】WebRTC 一对一通话-Web端
前端·音视频·webrtc