用深度强化学习来玩Chrome小恐龙快跑

目录

实机演示

代码实现


实机演示

用深度强化学习来玩Chrome小恐龙快跑

代码实现

python 复制代码
import os
import cv2
from pygame import RLEACCEL
from pygame.image import load
from pygame.sprite import Sprite, Group, collide_mask
from pygame import Rect, init, time, display, mixer, transform, Surface
from pygame.surfarray import array3d
import torch
from random import randrange, choice
import numpy as np

mixer.pre_init(44100, -16, 2, 2048)
init()

scr_size = (width, height) = (600, 150)
FPS = 60
gravity = 0.6

black = (0, 0, 0)
white = (255, 255, 255)
background_col = (235, 235, 235)

high_score = 0

screen = display.set_mode(scr_size)
clock = time.Clock()
display.set_caption("T-Rex Rush")


def load_image(
        name,
        sizex=-1,
        sizey=-1,
        colorkey=None,
):
    fullname = os.path.join("assets/sprites", name)
    image = load(fullname)
    image = image.convert()
    if colorkey is not None:
        if colorkey is -1:
            colorkey = image.get_at((0, 0))
        image.set_colorkey(colorkey, RLEACCEL)

    if sizex != -1 or sizey != -1:
        image = transform.scale(image, (sizex, sizey))

    return (image, image.get_rect())


def load_sprite_sheet(
        sheetname,
        nx,
        ny,
        scalex=-1,
        scaley=-1,
        colorkey=None,
):
    fullname = os.path.join("assets/sprites", sheetname)
    sheet = load(fullname)
    sheet = sheet.convert()

    sheet_rect = sheet.get_rect()

    sprites = []

    sizey = sheet_rect.height / ny
    if isinstance(nx, int):
        sizex = sheet_rect.width / nx
        for i in range(0, ny):
            for j in range(0, nx):
                rect = Rect((j * sizex, i * sizey, sizex, sizey))
                image = Surface(rect.size)
                image = image.convert()
                image.blit(sheet, (0, 0), rect)

                if colorkey is not None:
                    if colorkey is -1:
                        colorkey = image.get_at((0, 0))
                    image.set_colorkey(colorkey, RLEACCEL)

                if scalex != -1 or scaley != -1:
                    image = transform.scale(image, (scalex, scaley))

                sprites.append(image)

    else:  #list
        sizex_ls = [sheet_rect.width / i_nx for i_nx in nx]
        for i in range(0, ny):
            for i_nx, sizex, i_scalex in zip(nx, sizex_ls, scalex):
                for j in range(0, i_nx):
                    rect = Rect((j * sizex, i * sizey, sizex, sizey))
                    image = Surface(rect.size)
                    image = image.convert()
                    image.blit(sheet, (0, 0), rect)

                    if colorkey is not None:
                        if colorkey is -1:
                            colorkey = image.get_at((0, 0))
                        image.set_colorkey(colorkey, RLEACCEL)

                    if i_scalex != -1 or scaley != -1:
                        image = transform.scale(image, (i_scalex, scaley))

                    sprites.append(image)

    sprite_rect = sprites[0].get_rect()

    return sprites, sprite_rect


def extractDigits(number):
    if number > -1:
        digits = []
        i = 0
        while (number / 10 != 0):
            digits.append(number % 10)
            number = int(number / 10)

        digits.append(number % 10)
        for i in range(len(digits), 5):
            digits.append(0)
        digits.reverse()
        return digits


def pre_processing(image, w=84, h=84):
    image = image[:300, :, :]
    # cv2.imwrite("ori.jpg", image)
    image = cv2.cvtColor(cv2.resize(image, (w, h)), cv2.COLOR_BGR2GRAY)
    # cv2.imwrite("color.jpg", image)
    _, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
    # cv2.imwrite("bw.jpg", image)

    return image[None, :, :].astype(np.float32)


class Dino():
    def __init__(self, sizex=-1, sizey=-1):
        self.images, self.rect = load_sprite_sheet("dino.png", 5, 1, sizex, sizey, -1)
        self.images1, self.rect1 = load_sprite_sheet("dino_ducking.png", 2, 1, 59, sizey, -1)
        self.rect.bottom = int(0.98 * height)
        self.rect.left = width / 15
        self.image = self.images[0]
        self.index = 0
        self.counter = 0
        self.score = 0
        self.isJumping = False
        self.isDead = False
        self.isDucking = False
        self.isBlinking = False
        self.movement = [0, 0]
        self.jumpSpeed = 11.5

        self.stand_pos_width = self.rect.width
        self.duck_pos_width = self.rect1.width

    def draw(self):
        screen.blit(self.image, self.rect)

    def checkbounds(self):
        if self.rect.bottom > int(0.98 * height):
            self.rect.bottom = int(0.98 * height)
            self.isJumping = False

    def update(self):
        if self.isJumping:
            self.movement[1] = self.movement[1] + gravity

        if self.isJumping:
            self.index = 0
        elif self.isBlinking:
            if self.index == 0:
                if self.counter % 400 == 399:
                    self.index = (self.index + 1) % 2
            else:
                if self.counter % 20 == 19:
                    self.index = (self.index + 1) % 2

        elif self.isDucking:
            if self.counter % 5 == 0:
                self.index = (self.index + 1) % 2
        else:
            if self.counter % 5 == 0:
                self.index = (self.index + 1) % 2 + 2

        if self.isDead:
            self.index = 4

        if not self.isDucking:
            self.image = self.images[self.index]
            self.rect.width = self.stand_pos_width
        else:
            self.image = self.images1[(self.index) % 2]
            self.rect.width = self.duck_pos_width

        self.rect = self.rect.move(self.movement)
        self.checkbounds()

        if not self.isDead and self.counter % 7 == 6 and self.isBlinking == False:
            self.score += 1

        self.counter = (self.counter + 1)


class Cactus(Sprite):
    def __init__(self, speed=5, sizex=-1, sizey=-1):
        Sprite.__init__(self, self.containers)
        self.images, self.rect = load_sprite_sheet("cacti-small.png", [2, 3, 6], 1, sizex, sizey, -1)
        self.rect.bottom = int(0.98 * height)
        self.rect.left = width + self.rect.width
        self.image = self.images[randrange(0, 11)]
        self.movement = [-1 * speed, 0]

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        self.rect = self.rect.move(self.movement)

        if self.rect.right < 0:
            self.kill()


class Ptera(Sprite):
    def __init__(self, speed=5, sizex=-1, sizey=-1):
        Sprite.__init__(self, self.containers)
        self.images, self.rect = load_sprite_sheet("ptera.png", 2, 1, sizex, sizey, -1)
        self.ptera_height = [height * 0.82, height * 0.75, height * 0.60, height * 0.48]
        self.rect.centery = self.ptera_height[randrange(0, 4)]
        self.rect.left = width + self.rect.width
        self.image = self.images[0]
        self.movement = [-1 * speed, 0]
        self.index = 0
        self.counter = 0

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        if self.counter % 10 == 0:
            self.index = (self.index + 1) % 2
        self.image = self.images[self.index]
        self.rect = self.rect.move(self.movement)
        self.counter = (self.counter + 1)
        if self.rect.right < 0:
            self.kill()


class Ground():
    def __init__(self, speed=-5):
        self.image, self.rect = load_image("ground.png", -1, -1, -1)
        self.image1, self.rect1 = load_image("ground.png", -1, -1, -1)
        self.rect.bottom = height
        self.rect1.bottom = height
        self.rect1.left = self.rect.right
        self.speed = speed

    def draw(self):
        screen.blit(self.image, self.rect)
        screen.blit(self.image1, self.rect1)

    def update(self):
        self.rect.left += self.speed
        self.rect1.left += self.speed

        if self.rect.right < 0:
            self.rect.left = self.rect1.right

        if self.rect1.right < 0:
            self.rect1.left = self.rect.right


class Cloud(Sprite):
    def __init__(self, x, y):
        Sprite.__init__(self, self.containers)
        self.image, self.rect = load_image("cloud.png", int(90 * 30 / 42), 30, -1)
        self.speed = 1
        self.rect.left = x
        self.rect.top = y
        self.movement = [-1 * self.speed, 0]

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self):
        self.rect = self.rect.move(self.movement)
        if self.rect.right < 0:
            self.kill()


class Scoreboard():
    def __init__(self, x=-1, y=-1):
        self.score = 0
        self.tempimages, self.temprect = load_sprite_sheet("numbers.png", 12, 1, 11, int(11 * 6 / 5), -1)
        self.image = Surface((55, int(11 * 6 / 5)))
        self.rect = self.image.get_rect()
        if x == -1:
            self.rect.left = width * 0.89
        else:
            self.rect.left = x
        if y == -1:
            self.rect.top = height * 0.1
        else:
            self.rect.top = y

    def draw(self):
        screen.blit(self.image, self.rect)

    def update(self, score):
        score_digits = extractDigits(score)
        self.image.fill(background_col)
        if len(score_digits) == 6:
            score_digits = score_digits[1:]
        for s in score_digits:
            self.image.blit(self.tempimages[s], self.temprect)
            self.temprect.left += self.temprect.width
        self.temprect.left = 0


class ChromeDino(object):
    def __init__(self):
        self.gamespeed = 5
        self.gameOver = False
        self.gameQuit = False
        self.playerDino = Dino(44, 47)
        self.new_ground = Ground(-1 * self.gamespeed)
        self.scb = Scoreboard()
        self.highsc = Scoreboard(width * 0.78)
        self.counter = 0

        self.cacti = Group()
        self.pteras = Group()
        self.clouds = Group()
        self.last_obstacle = Group()

        Cactus.containers = self.cacti
        Ptera.containers = self.pteras
        Cloud.containers = self.clouds

        self.retbutton_image, self.retbutton_rect = load_image("replay_button.png", 35, 31, -1)
        self.gameover_image, self.gameover_rect = load_image("game_over.png", 190, 11, -1)

        self.temp_images, self.temp_rect = load_sprite_sheet("numbers.png", 12, 1, 11, int(11 * 6 / 5), -1)
        self.HI_image = Surface((22, int(11 * 6 / 5)))
        self.HI_rect = self.HI_image.get_rect()
        self.HI_image.fill(background_col)
        self.HI_image.blit(self.temp_images[10], self.temp_rect)
        self.temp_rect.left += self.temp_rect.width
        self.HI_image.blit(self.temp_images[11], self.temp_rect)
        self.HI_rect.top = height * 0.1
        self.HI_rect.left = width * 0.73

    def step(self, action, record=False):  # 0: Do nothing. 1: Jump. 2: Duck
        reward = 0.1
        if action == 0:
            reward += 0.01
            self.playerDino.isDucking = False
        elif action == 1:
            self.playerDino.isDucking = False
            if self.playerDino.rect.bottom == int(0.98 * height):
                self.playerDino.isJumping = True
                self.playerDino.movement[1] = -1 * self.playerDino.jumpSpeed

        elif action == 2:
            if not (self.playerDino.isJumping and self.playerDino.isDead) and self.playerDino.rect.bottom == int(
                    0.98 * height):
                self.playerDino.isDucking = True

        for c in self.cacti:
            c.movement[0] = -1 * self.gamespeed
            if collide_mask(self.playerDino, c):
                self.playerDino.isDead = True
                reward = -1
                break
            else:
                if c.rect.right < self.playerDino.rect.left < c.rect.right + self.gamespeed + 1:
                    reward = 1
                    break

        for p in self.pteras:
            p.movement[0] = -1 * self.gamespeed
            if collide_mask(self.playerDino, p):
                self.playerDino.isDead = True
                reward = -1
                break
            else:
                if p.rect.right < self.playerDino.rect.left < p.rect.right + self.gamespeed + 1:
                    reward = 1
                    break

        if len(self.cacti) < 2:
            if len(self.cacti) == 0 and len(self.pteras) == 0:
                self.last_obstacle.empty()
                self.last_obstacle.add(Cactus(self.gamespeed, [60, 40, 20], choice([40, 45, 50])))
            else:
                for l in self.last_obstacle:
                    if l.rect.right < width * 0.7 and randrange(0, 50) == 10:
                        self.last_obstacle.empty()
                        self.last_obstacle.add(Cactus(self.gamespeed, [60, 40, 20], choice([40, 45, 50])))

        # if len(self.pteras) == 0 and randrange(0, 200) == 10 and self.counter > 500:
        if len(self.pteras) == 0 and len(self.cacti) < 2 and randrange(0, 50) == 10 and self.counter > 500:
            for l in self.last_obstacle:
                if l.rect.right < width * 0.8:
                    self.last_obstacle.empty()
                    self.last_obstacle.add(Ptera(self.gamespeed, 46, 40))

        if len(self.clouds) < 5 and randrange(0, 300) == 10:
            Cloud(width, randrange(height / 5, height / 2))

        self.playerDino.update()
        self.cacti.update()
        self.pteras.update()
        self.clouds.update()
        self.new_ground.update()
        self.scb.update(self.playerDino.score)

        state = display.get_surface()
        screen.fill(background_col)
        self.new_ground.draw()
        self.clouds.draw(screen)
        self.scb.draw()
        self.cacti.draw(screen)
        self.pteras.draw(screen)
        self.playerDino.draw()

        display.update()
        clock.tick(FPS)

        if self.playerDino.isDead:
            self.gameOver = True

        self.counter = (self.counter + 1)

        if self.gameOver:
            self.__init__()

        state = array3d(state)
        if record:
            return torch.from_numpy(pre_processing(state)), np.transpose(
                cv2.cvtColor(state, cv2.COLOR_RGB2BGR), (1, 0, 2)), reward, not (reward > 0)
        else:
            return torch.from_numpy(pre_processing(state)), reward, not (reward > 0)
python 复制代码
import torch.nn as nn

class DeepQNetwork(nn.Module):
    def __init__(self):
        super(DeepQNetwork, self).__init__()

        self.conv1 = nn.Sequential(nn.Conv2d(4, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True))
        self.conv2 = nn.Sequential(nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True))
        self.conv3 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True))

        self.fc1 = nn.Sequential(nn.Linear(7 * 7 * 64, 512), nn.ReLU(inplace=True))
        self.fc2 = nn.Linear(512, 3)
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                nn.init.uniform_(m.weight, -0.01, 0.01)
                nn.init.constant_(m.bias, 0)

    def forward(self, input):
        output = self.conv1(input)
        output = self.conv2(output)
        output = self.conv3(output)
        output = output.view(output.size(0), -1)
        output = self.fc1(output)
        output = self.fc2(output)

        return output
python 复制代码
import argparse
import torch

from src.model import DeepQNetwork
from src.env import ChromeDino
import cv2


def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Chrome Dino""")
    parser.add_argument("--saved_path", type=str, default="trained_models")
    parser.add_argument("--fps", type=int, default=60, help="frames per second")
    parser.add_argument("--output", type=str, default="output/chrome_dino.mp4", help="the path to output video")

    args = parser.parse_args()
    return args


def q_test(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    checkpoint_path = "{}/chrome_dino.pth".format(opt.saved_path)
    checkpoint = torch.load(checkpoint_path)
    model.load_state_dict(checkpoint["model_state_dict"])
    model.eval()
    env = ChromeDino()
    state, raw_state, _, _ = env.step(0, True)
    state = torch.cat(tuple(state for _ in range(4)))[None, :, :, :]
    if torch.cuda.is_available():
        model.cuda()
        state = state.cuda()
    out = cv2.VideoWriter(opt.output, cv2.VideoWriter_fourcc(*"MJPG"), opt.fps, (600, 150))
    done = False
    while not done:
        prediction = model(state)[0]
        action = torch.argmax(prediction).item()
        next_state, raw_next_state, reward, done = env.step(action, True)
        out.write(raw_next_state)
        if torch.cuda.is_available():
            next_state = next_state.cuda()
        next_state = torch.cat((state[0, 1:, :, :], next_state))[None, :, :, :]
        state = next_state



if __name__ == "__main__":
    opt = get_args()
    q_test(opt)
python 复制代码
import argparse
import os
from random import random, randint, sample
import pickle
import numpy as np
import torch
import torch.nn as nn

from src.model import DeepQNetwork
from src.env import ChromeDino


def get_args():
    parser = argparse.ArgumentParser(
        """Implementation of Deep Q Network to play Chrome Dino""")
    parser.add_argument("--batch_size", type=int, default=64, help="The number of images per batch")
    parser.add_argument("--optimizer", type=str, choices=["sgd", "adam"], default="adam")
    parser.add_argument("--lr", type=float, default=1e-4)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--initial_epsilon", type=float, default=0.1)
    parser.add_argument("--final_epsilon", type=float, default=1e-4)
    parser.add_argument("--num_decay_iters", type=float, default=2000000)
    parser.add_argument("--num_iters", type=int, default=2000000)
    parser.add_argument("--replay_memory_size", type=int, default=50000,
                        help="Number of epoches between testing phases")
    parser.add_argument("--saved_folder", type=str, default="trained_models")

    args = parser.parse_args()
    return args


def train(opt):
    if torch.cuda.is_available():
        torch.cuda.manual_seed(123)
    else:
        torch.manual_seed(123)
    model = DeepQNetwork()
    if torch.cuda.is_available():
        model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
    if not os.path.isdir(opt.saved_folder):
        os.makedirs(opt.saved_folder)
    checkpoint_path = os.path.join(opt.saved_folder, "chrome_dino.pth")
    memory_path = os.path.join(opt.saved_folder, "replay_memory.pkl")
    if os.path.isfile(checkpoint_path):
        checkpoint = torch.load(checkpoint_path)
        iter = checkpoint["iter"] + 1
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        print("Load trained model from iteration {}".format(iter))
    else:
        iter = 0
    if os.path.isfile(memory_path):
        with open(memory_path, "rb") as f:
            replay_memory = pickle.load(f)
        print("Load replay memory")
    else:
        replay_memory = []
    criterion = nn.MSELoss()
    env = ChromeDino()
    state, _, _ = env.step(0)
    state = torch.cat(tuple(state for _ in range(4)))[None, :, :, :]
    while iter < opt.num_iters:
        if torch.cuda.is_available():
            prediction = model(state.cuda())[0]
        else:
            prediction = model(state)[0]
        # Exploration or exploitation
        epsilon = opt.final_epsilon + (
                max(opt.num_decay_iters - iter, 0) * (opt.initial_epsilon - opt.final_epsilon) / opt.num_decay_iters)
        u = random()
        random_action = u <= epsilon
        if random_action:
            action = randint(0, 2)
        else:
            action = torch.argmax(prediction).item()

        next_state, reward, done = env.step(action)
        next_state = torch.cat((state[0, 1:, :, :], next_state))[None, :, :, :]
        replay_memory.append([state, action, reward, next_state, done])
        if len(replay_memory) > opt.replay_memory_size:
            del replay_memory[0]
        batch = sample(replay_memory, min(len(replay_memory), opt.batch_size))
        state_batch, action_batch, reward_batch, next_state_batch, done_batch = zip(*batch)

        state_batch = torch.cat(tuple(state for state in state_batch))
        action_batch = torch.from_numpy(
            np.array([[1, 0, 0] if action == 0 else [0, 1, 0] if action == 1 else [0, 0, 1] for action in
                      action_batch], dtype=np.float32))
        reward_batch = torch.from_numpy(np.array(reward_batch, dtype=np.float32)[:, None])
        next_state_batch = torch.cat(tuple(state for state in next_state_batch))

        if torch.cuda.is_available():
            state_batch = state_batch.cuda()
            action_batch = action_batch.cuda()
            reward_batch = reward_batch.cuda()
            next_state_batch = next_state_batch.cuda()
        current_prediction_batch = model(state_batch)
        next_prediction_batch = model(next_state_batch)

        y_batch = torch.cat(
            tuple(reward if done else reward + opt.gamma * torch.max(prediction) for reward, done, prediction in
                  zip(reward_batch, done_batch, next_prediction_batch)))

        q_value = torch.sum(current_prediction_batch * action_batch, dim=1)
        optimizer.zero_grad()
        loss = criterion(q_value, y_batch)
        loss.backward()
        optimizer.step()

        state = next_state
        iter += 1
        print("Iteration: {}/{}, Loss: {:.5f}, Epsilon {:.5f}, Reward: {}".format(
            iter + 1,
            opt.num_iters,
            loss,
            epsilon, reward))
        if (iter + 1) % 50000 == 0:
            checkpoint = {"iter": iter,
                          "model_state_dict": model.state_dict(),
                          "optimizer": optimizer.state_dict()}
            torch.save(checkpoint, checkpoint_path)
            with open(memory_path, "wb") as f:
                pickle.dump(replay_memory, f, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
    opt = get_args()
    train(opt)
相关推荐
shayudiandian24 分钟前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
EkihzniY7 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通7 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
遇到困难睡大觉哈哈7 小时前
Harmony os 静态卡片(ArkTS + FormLink)详细介绍
前端·microsoft·harmonyos·鸿蒙
程序员小远7 小时前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
用户47949283569157 小时前
Bun 卖身 Anthropic!尤雨溪神吐槽:OpenAI 你需要工具链吗?
前端·openai·bun
p***43487 小时前
前端在移动端中的网络请求优化
前端
心无旁骛~7 小时前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾7 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵7 小时前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda