Python Opencv实践 - 凸包检测(ConvexHull)

复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/stars.png")
plt.imshow(img[:,:,::-1])

img_contour = img.copy()
#得到灰度图做Canny边缘检测
img_gray = cv.cvtColor(img_contour, cv.COLOR_BGR2GRAY)
edges = cv.Canny(img_gray, 120, 255, 0)
#提取并绘制轮廓
contours,hierarchy = cv.findContours(edges, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
img_contour = cv.drawContours(img_contour, contours, -1, (0,255,0), 2)
plt.imshow(img_contour, cmap=plt.cm.gray)

#凸包检测
#hull = cv.convexHull(points, clockwise, returnpoints)
#hull: 输出凸包结果,n*1*2数据结构,n为外包围圈的点的个数
#points: 输入的坐标点,通常为1* n * 2 结构,n为所有的坐标点的数目
#clockwise:转动方向,TRUE为顺时针,否则为逆时针;
#returnPoints:默认为TRUE,返回凸包上点的坐标,如果设置为FALSE,会返回与凸包点对应的轮廓上的点。
#参考资料:https://blog.csdn.net/lovetaozibaby/article/details/103214672
hulls = []
for contour in contours:
    hull = cv.convexHull(contour)
    hulls.append(hull)
img_convex_hull = cv.drawContours(img, hulls, -1, (0,255,0), 2)

plt.imshow(img_convex_hull[:,:,::-1])
相关推荐
点云SLAM3 分钟前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
七芒星20235 分钟前
ResNet(详细易懂解释):残差网络的革命性突破
人工智能·pytorch·深度学习·神经网络·学习·cnn
TMO Group 探谋网络科技14 分钟前
Salesforce vs Magento 选型指南:成本、功能差异对比清单
人工智能·magento·电商开发
piaopiaolanghua18 分钟前
PyCharm旧版本下载地址
ide·python·pycharm
云天徽上18 分钟前
【数据可视化-111】93大阅兵后的军费开支情况———2024年全球军费开支分析:用Python和Pyecharts打造炫酷可视化大屏
开发语言·python·信息可视化·pyecharts
Ginkgo_Lo31 分钟前
【LLM越狱】AI大模型DRA攻击解读与复现
人工智能·安全·ai·语言模型
凯子坚持 c38 分钟前
AI 赋能云端运维:基于 MCP 协议深度集成 Codebuddy CLI 与腾讯云 Lighthouse 的实战全解
运维·人工智能·腾讯云·腾讯轻量云ai创想家
胖达不服输39 分钟前
「日拱一码」087 机器学习——SPARROW
人工智能·python·机器学习·sparrow
minhuan1 小时前
构建AI智能体:三十一、AI医疗场景实践:医学知识精准问答+临床智能辅助决策CDSS
人工智能·医学知识问答·临床辅助决策·cdss·医学模型
大千AI助手1 小时前
线性预热机制(Linear Warmup):深度学习训练稳定性的关键策略
人工智能·深度学习·大模型·模型训练·学习率·warmup·线性预热机制