基于FPGA的图像sobel边缘提取算法开发,包括tb测试文件以及matlab验证代码

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

vivado2019.2

matlab2022a

3.部分核心程序

`timescale 1ns / 1ps
//
// Company: 
// Engineer: 
// 
// Create Date: 2023/07/31
// Design Name: 
// Module Name: sobel
// Project Name: 
// Target Devices: 
// Tool Versions: 
// Description: 
// 
// Dependencies: 
// 
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
// 
//


module tops(
input i_clk,
input i_rst,
input[7:0]i_I,
output reg[7:0]o_sobel
);
    
parameter LEN = 256;  
parameter th  = 255;      

........................................................

 
   
 
reg signed[10:0]x1;
reg signed[10:0]x2;

reg signed[10:0]y1;
reg signed[10:0]y2;

reg signed[11:0]x12;
reg signed[11:0]y12;

reg signed[11:0]x_;  
reg signed[11:0]y_;  
  
reg signed[12:0]edge_;  

always @(posedge i_clk or posedge i_rst)
begin
     if(i_rst)
     begin
     x1 <=11'd0;
     x2 <=11'd0;

     y1 <=11'd0;
     y2 <=11'd0;

     x12<=12'd0;
     y12<=12'd0;

     x_<=11'd0;
     y_<=11'd0;
  
     edge_ <=13'd0;
     end
else begin
.........................................................
  
     edge_<= x_ +  y_;  // 计算Sobel算子响应的绝对值和
     end
end 
    
    
    
always @(posedge i_clk or posedge i_rst)
begin
     if(i_rst)
     begin
     o_sobel <= 8'd0;
     end
else begin

          if(edge_>=th) //判断绝对值和是否大于阈值
          o_sobel <= 8'd255;
          else
          o_sobel <= 8'd0; 
 
     end
end  
    
    
endmodule
0X_001m

4.算法理论概述

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

Soble边缘检测算法比较简,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,尤其是对效率要求较高,而对细纹理不太关心的时候。Soble边缘检测通常带有方向性,可以只检测竖直边缘或垂直边缘或都检测。所以我们先定义两个梯度方向的系数:

然后我们来计算梯度图像,我们知道边缘点其实就是图像中灰度跳变剧烈的点,所以先计算梯度图像,然后将梯度图像中较亮的那一部分提取出来就是简单的边缘部分。

Sobel算子用了一个3*3的滤波器来对图像进行滤波从而得到梯度图像,这里面不再详细描述怎样进行滤波及它们的意义等。

竖起方向的滤波器:y_mask=op = [-1 -2 -1;0 0 0;1 2 1]/8;

水平方向的滤波器:op的转置:x_mask=op';

定义好滤波器后,我们就开始分别求垂直和竖起方向上的梯度图像。用滤波器与图像进行卷积即可:

bx = abs(filter2(x_mask,a));

by = abs(filter2(y_mask,a));

上面bx为水平方向上的梯度图像,by为垂直方向上的梯度图像。为了更清楚的说明算法过程,下面给出一张示例图像的梯度图像。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
艾思科蓝 AiScholar1 小时前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
AAIshangyanxiu16 小时前
遥感与GIS在滑坡、泥石流风险普查中的实践技术应用
图像处理·遥感·dem数据·arcgis地质灾害·envi遥感
小伍_Five20 小时前
从0开始:OpenCV入门教程【图像处理基础】
图像处理·python·opencv
机器视觉知识推荐、就业指导1 天前
【数字图像处理二】图像增强与空域处理
图像处理·人工智能·经验分享·算法·计算机视觉
烟锁池塘柳01 天前
Camera ISP Pipeline(相机图像信号处理管线)
图像处理·数码相机·信号处理
深图智能1 天前
OpenCV 4.10.0 图像处理基础入门教程
图像处理·opencv·计算机视觉
美狐美颜sdk2 天前
直播美颜SDK的底层技术解析:图像处理与深度学习的结合
图像处理·人工智能·深度学习·直播美颜sdk·视频美颜sdk·美颜api·滤镜sdk
刀客1232 天前
python小项目编程-中级(1、图像处理)
开发语言·图像处理·python
小屁孩大帅-杨一凡2 天前
如何实现使用DeepSeek的CV模型对管道内模糊、低光照或水渍干扰的图像进行去噪、超分辨率重建。...
图像处理·人工智能·opencv·计算机视觉·超分辨率重建
埃菲尔铁塔_CV算法2 天前
基于 C++ OpenCV 图像灰度化 DLL 在 C# WPF 中的拓展应用
c++·图像处理·人工智能·opencv·机器学习·计算机视觉·c#