时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测)

时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测)

目录

    • [时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测)](#时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测))

预测效果







基本介绍

1.时序预测 | MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测);

2.运行环境为Matlab2021b;

3.单个变量时间序列预测;

4.data为数据集,单个变量excel数据,MainCNN_GRUTS.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、RMSE、MAE、MAPE多指标评价;

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现CNN-GRU卷积门控循环单元时间序列预测(风电功率预测)
clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
简简单单做算法1 天前
基于GA遗传优化TCN-BiGRU注意力机制网络模型的时间序列预测算法matlab仿真
matlab·tcn-bigru·时间序列预测·注意力机制·ga遗传优化
机器学习之心4 天前
时序预测 | Transformer-LSTM-SVM时间序列预测(Matlab完整源码和数据,适合基础小白研究)
支持向量机·lstm·transformer·时间序列预测
机器学习之心10 天前
聚划算!CNN-GRU、CNN、GRU三模型多变量回归预测
回归·cnn·gru·cnn-gru
机器学习之心15 天前
回归预测 | Matlab实现RIME-CNN-GRU-Attention霜冰优化卷积门控循环单元注意力机制多变量回归预测
回归·attention·cnn-gru·注意力机制多变量回归预测·rime-cnn-gru·霜冰优化卷积门控循环单元
机器学习之心2 个月前
JCRQ1河马算法+四模型对比!HO-CNN-GRU-Attention系列四模型多变量时序预测
算法·cnn·gru·cnn-gru·四模型多变量时序预测
机器学习之心2 个月前
CNN-GRU卷积神经网络门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)
matlab·cnn·gru·cnn-gru·卷积神经网络门控循环单元·多变量多步预测
阡之尘埃3 个月前
Python数据分析案例70——基于神经网络的时间序列预测(滞后性的效果,预测中存在的问题)
python·神经网络·数据分析·数据可视化·循环神经网络·时间序列预测
机器学习之心3 个月前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测
机器学习之心3 个月前
CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型
cnn-gru·cnn-gru-matt·贝叶斯超参数优化·多输入单输出回归模型
简简单单做算法4 个月前
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
matlab·cnn·时间序列预测·tcn·时间卷积神经网络·ga遗传优化·ga-tcn