混合编程之多线程

前言: 小白一个, 没有系统性的学习过python网络通信,只是单纯的cv加修改代码,仅作留念以及参考用,感谢互联网博主们和bito插件,使得chatGPT得以免费使用.

另外该多线程传输图片的速度比没有多线程执行还满,后续不对python服务端做优化,而改为C++服务端实现.写出来继续再分享把

前篇博客地址

python客户端

采用生存者消费者模式模式2joinablequeue库.

客户端实现还是比较简单的,麻烦在server端

python 复制代码
import pickle
import time
from multiprocessing import Process, JoinableQueue
from queue import Queue

from multiprocessing.connection import Client, Listener

from client_apart import draw_box
from image import plot_boxes, img_encode
import os
from natsort import ns, natsorted

host = 'localhost'
port = 9006
total_time = 0


def img_product(img_queue, path, path_mode='image'):
    if path_mode == 'image':
        img = img_encode(path)
        img_obj = {'frame_num': 1, 'image': img}  # need frame_num?
        img_queue.put(img_obj)
    elif path_mode == 'dir':
        dir_list = os.listdir(path)
        files = natsorted(dir_list, alg=ns.PATH)  # 顺序读取文件名
        i = 1
        for filename in files:
            img_path = path + '/' + filename
            img = img_encode(img_path)
            img_obj = {'frame_num': i, 'image': img}  # need frame_num?
            i += 1
            img_queue.put(img_obj)
        img_queue.put({'frame_num': 0, 'image': "end"})  # end signal 
    img_queue.join()


def server_consumer(img_queue):
    # 1. send data
    while True:
        img_obj = img_queue.get()
        if img_obj is None:
            client.close()  # avoid connection-reset-by-peer
            break  # exit end
        data_bytes = pickle.dumps(img_obj)
        start = int(round(time.time() * 1000))
        start_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
        client.send(data_bytes)  # 40ms/per send img
        # print('send cost time: ', (end - start))
        img_queue.task_done()
        try:
            det_result = client.recv()
            end = int(round(time.time() * 1000))
            end_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
            print('recv cost time: ', (end-start))
        except EOFError:
            break
        det_result = pickle.loads(det_result)
        draw_box(det_result, img_obj)


if __name__ == '__main__':
    client = Client((host, port))
    Listener()
    img_dir = './data'
    one_img = './data/Enterprise001.jpg'
    mode = 'dir'

    img_jq = JoinableQueue()
    producer = Process(target=img_product, args=(img_jq, img_dir, mode,))
    consumer = Process(target=server_consumer, args=(img_jq,))
    consumer.daemon = True  # set daemon but not set join()

    producer.start()
    consumer.start()

    producer.join()

Python服务端

此处接受图片和发送结果线程处在一个类内,使得可以共享一个Listener,来自chatGPT的idea.

python 复制代码
from ctypes import *
import ctypes
import time
import pickle
from PHeader import *

import cv2
import numpy as np
from multiprocessing.connection import Listener
from multiprocessing import JoinableQueue, Process, Queue, connection
import threading


class ListenerThread(threading.Thread):
    def __init__(self, address, data_handler, lib):
        super().__init__()
        self.daemon = True
        self.address = address
        self.data_handler = data_handler
        self.lib = lib
        self.listener = Listener(self.address, backlog=5)
        self.conn = None
        self.is_running = True
        
    def run(self):
        print('Listening on', self.listener.address)
        while self.is_running:
            try:
                self.conn = self.listener.accept()  # ready to accept data continually
                print('Connected by', self.listener.last_accepted)
                t1 = threading.Thread(target=self.receive_data)
                t2 = threading.Thread(target=self.send_result)
                t1.start()
                t2.start()
                t1.join()
                t2.join()
            except OSError as e:
                if e.errno != 98:  # Address already in use
                    raise
                print('Address already in use, retrying in 1 second...')
                time.sleep(1)
        

    def destroy_Model(self):  # when qt send a signal
        self.lib.interface_destoryThread()

    def receive_data(self):
        time_cost1 = 0
        while True:
            try:
                start = int(round(time.time() * 1000))
                received_bytes = self.conn.recv()  # recv Client data
                end = int(round(time.time() * 1000))
                print('recv time cost: ', end-start)
                time_cost1 += end-start
                img_dict = pickle.loads(received_bytes)
                if img_dict["frame_num"] == 0:
                    print("receive's thread already receive all data, close thread!!")
                    print("recv: ", time_cost1)
                    self.lib.interface_setEmptyFlag()  # make send thread break
                    break
                img_dict['image'] = cv2.imdecode(img_dict['image'], cv2.IMREAD_COLOR)
                self.data_handler.sendImgtoC(self.lib, img_dict, 0)  # prepare to send img
            except EOFError:
                print('Connection closed')
                self.conn.close()
                break

    def send_result(self):
        time_cost1 = 0
        time_cost2 = 0
        while True:
            self.lib.interface_getClsQueue.restype = ObjClassifyOutput
            start = int(round(time.time() * 1000))
            output = self.lib.interface_getClsQueue()  # get result from model
            end = int(round(time.time() * 1000))
            time_cost1 += end-start
            print('get cls time cost: ', end-start)
            if output.object_list.object_num >= 0:
                cls_result = self.data_handler.CtoP(output)
                cls_result = pickle.dumps(cls_result)
                start = int(round(time.time() * 1000))
                self.conn.send(cls_result)
                end = int(round(time.time() * 1000))
                print('send time cost: ', end-start)
                time_cost2 += end-start
            elif output.object_list.object_num == -1:   # queue is empty for now
                time.sleep(0.04)
                continue
            elif output.object_list.object_num == -2:   # all data is classify
                print("send's thread alreay handle all data, close thread!!")
                print("cls: ", time_cost1, ' send: ', time_cost2)
                # self.close()
                break

    def close(self):  # useless for now
        self.conn.close()
        # self.listener.close()
        self.run()


class DataHandler:
    def __init__(self):
        self.data = None

    def CtoP(self, output):  # 将模型结果解析为python列表
        # [cv_object_list: [cv_object: [cv_box: [] ]]]
        cv_object_list = []
        cls_out = []
        obj_list = output.object_list
        if obj_list.object_num != 0:
            for i in range(obj_list.object_num):
                cv_box = []
                cv_object = []
                obj = obj_list.object[i]
                # bbox
                cv_box.append(obj.bbox.left_top_x)
                cv_box.append(obj.bbox.left_top_y)
                cv_box.append(obj.bbox.w)
                cv_box.append(obj.bbox.h)
                cv_object.append(cv_box)
                # classes/objectness/prob
                cv_object.append(obj.classes)
                cv_object.append(obj.objectness)
                prob = POINTER(c_float)(obj.prob)
                cv_object.append(prob.contents.value)
                # cv_object
                cv_object_list.append(cv_object)
            cv_object_list.append(obj_list.object_num)

            # cv_object_list
            cls_out.append(cv_object_list)
        return cls_out

    def sendImgtoC(self, lib, img_dict, i):
        lib.interface_receive.argtypes = [PythonMat]
        # 1. combine info to img
        pi = PythonMat()
        pi.frame_num[0] = img_dict["frame_num"]
        img = img_dict['image']
        # 1.1 set width/height
        PARAM = c_int * 32
        height = PARAM()
        height[0] = img.shape[0]
        pi.height = height
        width = PARAM()
        width[0] = img.shape[1]
        pi.width = width
        # 1.2 set Mat
        frame_data = np.asarray(img, dtype=np.uint8)
        frame_data = frame_data.ctypes.data_as(c_char_p)
        pi.frame[0] = frame_data
        # 2. send img to detect model
        lib.interface_receive(pi)


if __name__ == '__main__':
    address = ('localhost', 9006)
    data_handler = DataHandler()
    ll = ctypes.cdll.LoadLibrary
    lib = ll("../../lib/libDetClsController.so")  # create a C lib
    listener_thread = ListenerThread(address, data_handler, lib)
    listener_thread.start()
    try:
        det_process = threading.Thread(target=lib.interface_initDetectImage)
        cls_process = threading.Thread(target=lib.interface_initClassifyImage)
        det_process.start()
        cls_process.start()
        det_process.join()  # need a break signal
        cls_process.join()
    except KeyboardInterrupt:
        # 程序被强制关闭
        print('Program terminated')
        # 关闭ListenerThread对象
        listener_thread.is_running = False
        listener_thread.join()
    finally:
        # 关闭ListenerThread对象
        listener_thread.is_running = False
        listener_thread.join()

C++模型调用

此处涉及其他人员写的代码,做修改处理

cpp 复制代码
typedef struct 
{
int width[CV_MAX_BATCH_SIZE];
int height[CV_MAX_BATCH_SIZE];
char* frame[CV_MAX_BATCH_SIZE]; 
int frame_num[CV_MAX_BATCH_SIZE]; 
}PythonMat;

// 多线程控制相关
mutex mtxQueueDet;  // mutex for detect queue
mutex mtxQueueImg;  // mutex for image queue
mutex mtxQueueCls;  // mutex for classify queue
mutex mtxif;
queue<> queueDetOut;// Det output queue
queue<> queueClsOut;// Det classify queue
queue<cv::Mat> queueMat;
bool DetectFlag = true;
bool ClassifyFlag = true;
bool empty_flag = false;

void receiveImg(PythonMat &img)
{
    cv::Mat frame(img.height[0], img.width[0], CV_8UC3, img.frame[0]);

    mtxQueueImg.lock();
    queueMat.push(frame);
    cout << "frame num: "<<  img.frame_num[0] << endl;
    mtxQueueImg.unlock();
}

void DetectImage()
{
    Detect detect_output;
    Detect detectmodel;
    detectmodel.Init(config_path, 1);
    cv::Mat frame;
    while(1)
        { 
            if (queueMat.empty()) 
            {
                if(!DetectFlag)
                {
                    break;
                }
                usleep(2000);
                continue;
            }
            mtxQueueImg.lock();
            frame = queueMat.front();
            queueMat.pop();
            mtxQueueImg.unlock();

            detect_output = detectmodel.Run(detect_input);
            
            // lock
            mtxQueueDet.lock();
            queueDetOut.push(detect_output);
            cout << "detect run !!" << endl;
            mtxQueueDet.unlock();
        }
    return;
}

void ClassifyImage()
{
    Classify objclassify;
    objclassify.Init(config_path, 1);
    ClassifyInput input;
    ClassifyOutput output;
    cv::Mat frame;
    while(1)
    {
        if (queueDetOut.empty()) 
        {
            if(!ClassifyFlag)
            {
                break;
            }
			usleep(2000);
            continue;
		}
        
        mtxQueueDet.lock();
        detect_result = queueDetOut.front();
        queueDetOut.pop();
        mtxQueueDet.unlock();
        
        output = objclassify.Run(input);
        
        mtxQueueCls.lock();
        queueClsOut.push(output);
        mtxQueueCls.unlock();
    }
    return;
}


ClassifyOutput getClsQueue(){
    ObjClassifyOutput output;
    if (queueClsOut.empty()){
        usleep(2000);
        output.object_list.object_num = -1;  // -1 is now empty; -2 is all empty 
        if (empty_flag){
            output.object_list.object_num = -2;
            empty_flag = false;
        }
        return output;
    }
    mtxQueueCls.lock();
    output = queueClsOut.front();
    queueClsOut.pop();
    cout << "cls_out pop " << output.object_list.object_num << endl;
    mtxQueueCls.unlock();
    return output;
    
}

extern "C" {
int i = 0;
void interface_initDetectImage(){
    // if (flag ) exit thread detect/classify 
    DetectImage();
}
void interface_initClassifyImage(){
    ClassifyImage();
}
void interface_receive(PythonMat &img){
    printf("run %d times\n", i++);
    receiveImg(img); 
}
void interface_setEmptyFlag(){
    empty_flag = true;
}
void testThread(){
    printf("C++ method!!\n");
}
ClassifyOutput interface_getClsQueue(){
    ClassifyOutput output;
    output = getClsQueue();
    return output;
}

void interface_destoryThread(){
    DetectFlag = false;
    ClassifyFlag = false;
}
}

至此这个混合编程项目结束,但是server接收到client耗时居然300ms,需要优化...

参考博客

  1. 共享内存
  2. Address already in use
  3. connection-reset-by-peer 我是把client.close()加上就不报错
  4. (最终版)linux下python和c++相互调用共享内存通信
  5. 常见python通信错误
    1. EOFError
    2. OSError: handle is closed
    3. Broken pipe
相关推荐
Elastic 中国社区官方博客30 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上1 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy1 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar1 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave2 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商2 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼2 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
周杰伦_Jay3 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
SpikeKing3 小时前
LLM - 大模型 ScallingLaws 的指导模型设计与实验环境(PLM) 教程(4)
人工智能·llm·transformer·plm·scalinglaws