双向 LSTM(Bidirectional LSTM)与普通 LSTM 公式过程

双向 LSTM(Bidirectional LSTM)与普通 LSTM 有类似的公式过程,但有一些细微的差别。LSTM 是一种循环神经网络(RNN),用于处理序列数据。它具有一个门控机制,可以捕捉长期依赖关系。

双向 LSTM 结构中有两个 LSTM 层,一个从前向后处理序列,另一个从后向前处理序列。这样,模型可以同时利用前面和后面的上下文信息。在处理序列时,每个时间步的输入会被分别传递给两个 LSTM 层,然后它们的输出会被合并。

具体而言,双向 LSTM 的公式过程如下:

  • 前向 LSTM:

    • 输入门(input gate): i t = σ ( W i x x t + W i h h t − 1 + b i ) i_t = \sigma(W_{ix}x_t + W_{ih}h_{t-1} + b_i) it=σ(Wixxt+Wihht−1+bi)
    • 遗忘门(forget gate): f t = σ ( W f x x t + W f h h t − 1 + b f ) f_t = \sigma(W_{fx}x_t + W_{fh}h_{t-1} + b_f) ft=σ(Wfxxt+Wfhht−1+bf)
    • 细胞状态(cell state)更新: C ~ t = tanh ( W c x x t + W c h h t − 1 + b c ) \tilde{C}t = \text{tanh}(W{cx}x_t + W_{ch}h_{t-1} + b_c) C~t=tanh(Wcxxt+Wchht−1+bc)
    • 细胞状态(cell state): C t = f t ⊙ C t − 1 + i t ⊙ C ~ t C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t Ct=ft⊙Ct−1+it⊙C~t
    • 输出门(output gate): o t = σ ( W o x x t + W o h h t − 1 + b o ) o_t = \sigma(W_{ox}x_t + W_{oh}h_{t-1} + b_o) ot=σ(Woxxt+Wohht−1+bo)
    • 隐状态(hidden state): h t = o t ⊙ tanh ( C t ) h_t = o_t \odot \text{tanh}(C_t) ht=ot⊙tanh(Ct)
  • 后向 LSTM:

    • 输入门(input gate): i t ′ = σ ( W i x ′ x t + W i h ′ h t + 1 ′ + b i ′ ) i't = \sigma(W'{ix}x_t + W'{ih}h'{t+1} + b'_i) it′=σ(Wix′xt+Wih′ht+1′+bi′)
    • 遗忘门(forget gate): f t ′ = σ ( W f x ′ x t + W f h ′ h t + 1 ′ + b f ′ ) f't = \sigma(W'{fx}x_t + W'{fh}h'{t+1} + b'_f) ft′=σ(Wfx′xt+Wfh′ht+1′+bf′)
    • 细胞状态(cell state)更新: C ~ t ′ = tanh ( W c x ′ x t + W c h ′ h t + 1 ′ + b c ′ ) \tilde{C}'t = \text{tanh}(W'{cx}x_t + W'{ch}h'{t+1} + b'_c) C~t′=tanh(Wcx′xt+Wch′ht+1′+bc′)
    • 细胞状态(cell state): C t ′ = f t ′ ⊙ C t + 1 ′ + i t ′ ⊙ C ~ t ′ C'_t = f't \odot C'{t+1} + i'_t \odot \tilde{C}'_t Ct′=ft′⊙Ct+1′+it′⊙C~t′
    • 输出门(output gate): o t ′ = σ ( W o x ′ x t + W o h ′ h t + 1 ′ + b o ′ ) o't = \sigma(W'{ox}x_t + W'{oh}h'{t+1} + b'_o) ot′=σ(Wox′xt+Woh′ht+1′+bo′)
    • 隐状态(hidden state): h t ′ = o t ′ ⊙ tanh ( C t ′ ) h'_t = o'_t \odot \text{tanh}(C'_t) ht′=ot′⊙tanh(Ct′)

其中, x t x_t xt 是输入序列的第 t t t 个时间步的向量表示, h t h_t ht 是前向 LSTM 在第 t t t 个时间步的隐状态, h t + 1 ′ h'{t+1} ht+1′ 是后向 LSTM 在第 t t t 个时间步的隐状态, C t C_t Ct 是前向 LSTM 在第 t t t 个时间步的细胞状态, C t + 1 ′ C'{t+1} Ct+1′ 是后向 LSTM 在第 t t t 个时间步的细胞状态。 W W W 和 b b b 是模型的参数, σ \sigma σ 是 sigmoid 函数, ⊙ \odot ⊙ 表示逐元素相乘。

通过双向 LSTM,我们可以获得更全面的序列信息,有助于提高模型在序列任务中的性能。

相关推荐
shayudiandian2 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
嵌入式-老费3 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
强化学习与机器人控制仿真4 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
2501_941145855 小时前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
努力的光头强6 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
没头脑的男大7 小时前
Unet+Transformer脑肿瘤分割检测
人工智能·深度学习·transformer
AI即插即用7 小时前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
哥布林学者8 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(四)编程框架
深度学习·ai
brave and determined11 小时前
可编程逻辑器件学习(day24):异构计算:突破算力瓶颈的未来之路
人工智能·嵌入式硬件·深度学习·学习·算法·fpga·asic
nju_spy11 小时前
论文阅读 - 深度学习端到端解决库存管理问题 - 有限时间范围内的多周期补货问题(Management Science)
人工智能·深度学习·动态规划·端到端·库存管理·两阶段pto·多周期补货问题