大模型综述论文笔记6-15

这里写自定义目录标题

  • Keywords
  • [Backgroud for LLMs](#Backgroud for LLMs)
    • [Technical Evolution of GPT-series Models](#Technical Evolution of GPT-series Models)
      • [Research of OpenAI on LLMs can be roughly divided into the following stages](#Research of OpenAI on LLMs can be roughly divided into the following stages)
        • [Early Explorations](#Early Explorations)
        • [Capacity Leap](#Capacity Leap)
        • [Capacity Enhancement](#Capacity Enhancement)
        • [The Milestones of Language Models](#The Milestones of Language Models)
  • Resources
  • Pre-training
    • [Data Collection](#Data Collection)
    • [Data Preprocessing](#Data Preprocessing)

Keywords

GPT:Generative Pre-Training

Backgroud for LLMs

Technical Evolution of GPT-series Models

Two key points to GPT's success are (I) training decoder-onlly Transformer language models that can accurately predict the next word and (II) scaling up the size of language models

Research of OpenAI on LLMs can be roughly divided into the following stages

Early Explorations

Capacity Leap

ICT

Capacity Enhancement

1.training on code data

Codex: a GPT model fine-tuned on a large corpus of GitHub

code
2.alignment with human preference

reinforcement learning from human feedback (RLHF) algorithm

Note that it seems that the wording of "instruction tuning" has seldom

been used in OpenAI's paper and documentation, which is substituted by

supervised fine-tuning on human demonstrations (i.e., the first step

of the RLHF algorithm).

The Milestones of Language Models

chatGPT(based on gpt3.5 and gpt4) and GPT-4(multimodal)

Resources

Stanford Alpaca is the first open instruct-following model fine-tuned based on LLaMA (7B).

Alpaca LoRA (a reproduction of Stanford Alpaca using LoRA)

model 、data、library

Pre-training

Data Collection

General Text Data:webpages, books, and conversational text

Specialized Text Data:Multilingual text, Scientific text, Code

Data Preprocessing

Quality Filtering

  1. The former approach trains a selection classifier based on highquality texts and leverages it to identify and filter out low quality data.
  2. heuristic based approaches to eliminate low-quality texts through a set of well-designed rules: Language based filtering, Metric based filtering, Statistic based filtering, Keyword based filtering

De-duplication

Existing work has found that duplicate data in a corpus would reduce the diversity of language models, which may cause the training process to become unstable and thus affect the model performance.

  1. Privacy Redaction: (PII:personally identifiable information )
  2. Tokenization:(It aims to segment raw text into sequences of individual tokens, which are subsequently used as the inputs of LLMs.) Byte-Pair Encoding (BPE) tokenization; WordPiece tokenization; WordPiece tokenization
相关推荐
Jamence3 小时前
多模态大语言模型arxiv论文略读(119)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
LuH11248 小时前
【论文阅读笔记】高光反射实时渲染新突破:3D Gaussian Splatting with Deferred Reflection 技术解析
论文阅读·笔记·3d
王上上8 小时前
【论文阅读32】预期寿命预测(2024)
论文阅读
张较瘦_9 小时前
[论文阅读] 人工智能+软件工程(软件测试) | 当大语言模型遇上APP测试:SCENGEN如何让手机应用更靠谱
论文阅读·人工智能·软件工程
张较瘦_12 小时前
[论文阅读] 系统架构 | 零售 IT 中的微服务与实时处理:开源工具链与部署策略综述
大数据·论文阅读·零售
王上上16 小时前
【论文阅读31】-CNN-LSTM(2025)-电池健康预测
论文阅读·cnn·lstm
张较瘦_2 天前
[论文阅读] 人工智能 | 利用负信号蒸馏:用REDI框架提升LLM推理能力
论文阅读·人工智能
塔_Tass2 天前
【论文阅读】:Weighted Graph Cuts without Eigenvectors:A Multilevel Approach
论文阅读·机器学习·聚类·k-means
张较瘦_2 天前
[论文阅读] 人工智能+软件工程 | 理解GitGoodBench:评估AI代理在Git中表现的新基准
论文阅读·人工智能·软件工程