大模型综述论文笔记6-15

这里写自定义目录标题

  • Keywords
  • [Backgroud for LLMs](#Backgroud for LLMs)
    • [Technical Evolution of GPT-series Models](#Technical Evolution of GPT-series Models)
      • [Research of OpenAI on LLMs can be roughly divided into the following stages](#Research of OpenAI on LLMs can be roughly divided into the following stages)
        • [Early Explorations](#Early Explorations)
        • [Capacity Leap](#Capacity Leap)
        • [Capacity Enhancement](#Capacity Enhancement)
        • [The Milestones of Language Models](#The Milestones of Language Models)
  • Resources
  • Pre-training
    • [Data Collection](#Data Collection)
    • [Data Preprocessing](#Data Preprocessing)

Keywords

GPT:Generative Pre-Training

Backgroud for LLMs

Technical Evolution of GPT-series Models

Two key points to GPT's success are (I) training decoder-onlly Transformer language models that can accurately predict the next word and (II) scaling up the size of language models

Research of OpenAI on LLMs can be roughly divided into the following stages

Early Explorations

Capacity Leap

ICT

Capacity Enhancement

1.training on code data

Codex: a GPT model fine-tuned on a large corpus of GitHub

code
2.alignment with human preference

reinforcement learning from human feedback (RLHF) algorithm

Note that it seems that the wording of "instruction tuning" has seldom

been used in OpenAI's paper and documentation, which is substituted by

supervised fine-tuning on human demonstrations (i.e., the first step

of the RLHF algorithm).

The Milestones of Language Models

chatGPT(based on gpt3.5 and gpt4) and GPT-4(multimodal)

Resources

Stanford Alpaca is the first open instruct-following model fine-tuned based on LLaMA (7B).

Alpaca LoRA (a reproduction of Stanford Alpaca using LoRA)

model 、data、library

Pre-training

Data Collection

General Text Data:webpages, books, and conversational text

Specialized Text Data:Multilingual text, Scientific text, Code

Data Preprocessing

Quality Filtering

  1. The former approach trains a selection classifier based on highquality texts and leverages it to identify and filter out low quality data.
  2. heuristic based approaches to eliminate low-quality texts through a set of well-designed rules: Language based filtering, Metric based filtering, Statistic based filtering, Keyword based filtering

De-duplication

Existing work has found that duplicate data in a corpus would reduce the diversity of language models, which may cause the training process to become unstable and thus affect the model performance.

  1. Privacy Redaction: (PII:personally identifiable information )
  2. Tokenization:(It aims to segment raw text into sequences of individual tokens, which are subsequently used as the inputs of LLMs.) Byte-Pair Encoding (BPE) tokenization; WordPiece tokenization; WordPiece tokenization
相关推荐
源于花海2 小时前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
新手小白勇闯新世界1 天前
点云论文阅读-1-pointnet++
论文阅读·人工智能·深度学习·神经网络·计算机视觉
小菜日记^_^1 天前
BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense(论文阅读)
论文阅读·人工智能·深度学习·sp·ai安全·backdoor 后门攻击·安全四大
衬衫chenshan1 天前
【论文阅读】(Security) Assertions by Large Language Models
论文阅读·人工智能·语言模型
YMWM_1 天前
论文阅读《BEVFormer》
论文阅读
LinKouun1 天前
论文笔记 SuDORMRF:EFFICIENT NETWORKS FOR UNIVERSAL AUDIO SOURCE SEPARATION
论文阅读
Matrix_112 天前
论文阅读:DualDn Dual-domain Denoising via Differentiable ISP
论文阅读·人工智能·计算摄影
小嗷犬2 天前
【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning
论文阅读·人工智能·大模型·微调·prompt
paixiaoxin2 天前
学术界的秘密武器:Zotero7大插件推荐
论文阅读·经验分享·笔记·云计算·学习方法·zotero·1024程序员节
是阿千呀!2 天前
(时序论文阅读)TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting
论文阅读·人工智能·深度学习·自然语言处理·时间序列处理