Apache Linkis 与 OceanBase 集成:实现数据分析速度提升

导语:恭喜 OceanBase 生态全景图中又添一员,Apache Linkis 构建了一个计算中间件层,以促进上层应用程序和底层数据引擎之间的连接、治理和编排。

近日,计算中间件 Apache Linkis 在其新版本中通过数据源功能,支持用户通过 Linkis 去对接使用 OceanBase 数据库。本文主要介绍 Linkis v1.3.2 中 OceanBase 数据库的集成。由于 OceanBase 数据库兼容 MySQL 5.7/8.0 的大部分功能和语法。因此,OceanBase 数据库可以当作 MySQL 使用。

准备工作

1. 环境安装

安装和部署 OceanBase 数据库,请参阅

  • 部署文档

https://www.oceanbase.com/docs/common-oceanbase-database-cn-10000000001687861

  • 一文讲透|如何部署OceanBase社区版

https://open.oceanbase.com/blog/2235967744

2. 环境验证

你可以使用 MySQL 命令来验证 OceanBase 数据库的安装情况。

复制代码
mysql -h${ip} -P${port} -u${username} -p${password} -D${db_name}

连接成功,如下图所示:

Linkis 提交执行 OceanBase 数据库任务

1. 通过 linkis-cli 提交

复制代码
sh ./bin/linkis-cli -engineType jdbc-4 -codeType jdbc -code "show tables" -submitUser hadoop -proxyUser hadoop -runtimeMap wds.linkis.jdbc.connect.url=jdbc:mysql://${ip} :${port}/${db_name} -runtimeMap wds.linkis.jdbc.driver=com.mysql.jdbc.Driver -runtimeMap wds.linkis.jdbc.username=${username} -runtimeMap wds.linkis.jdbc.password =${password}

2. 通过 Linkis Java SDK 提交任务

Linkis 提供 Java 和 Scala 的 SDK,用于向 Linkis 服务器提交任务。有关详细信息,请参阅 JAVA SDK Manual 👇

https://linkis.apache.org/docs/latest/user-guide/sdk-manual

对于 OceanBase 任务,用户只需要在 Demo 中修改 EngineConnType 和 CodeType 参数:

​​​​​​​

复制代码
Map<String, Object> labels = new HashMap<String, Object>(); labels.put (LabelKeyConstant.ENGINE_TYPE_KEY, "jdbc-4"); // required engineType Labellabels.put(LabelKeyConstant.USER_CREATOR_TYPE_KEY, "hadoop-IDE");// required execute user and creator labels.put(LabelKeyConstant.CODE_TYPE_KEY, "jdbc"); // required codeType

3. 多数据源支持

路径:登录管理平台-->数据源管理

第一步: 创建新的数据源

第二步: 连接测试

单击测试连接按钮进行测试

第三步 :发布数据源

第四步: 通过指定数据源名称提交 OceanBase 任务

请求 URL:

http://${gateway_url}:${port}/api/rest_j/v1/entrance/submit

方法:POST

请求参数:

​​​​​​​​​​​​​​

复制代码
{    "executionContent": {        "code": "show databases",        "runType": "jdbc"    },    "params": {        "variable": {},        "configuration": {            "startup": {},            "runtime": {                "wds.linkis.engine.runtime.datasource": "ob-test"            }        }    },    "labels": {        "engineType": "jdbc-4"    }}回应:{  "method": "/api/entrance/submit",  "status": 0,  "message": "OK",  "data": {    "taskID": 93,    "execID": "exec_id018017linkis-cg-entrance000830fb1364:9104IDE_hadoop_jdbc_0"  }}

Linkis 作为中间计算层,使各个上层应用以紧耦合的方式直接连接和访问各种底层引擎如 OceanBase、MySQL 等。实现了统一变量等用户资源的互通,脚本、UDF、函数和资源文件,并通过 REST 标准接口提供数据源和元数据管理服务。

Linkis 强大的连接、重用、编排、扩展和治理能力,通过应用层和引擎层的解耦,以标准化可重用的方式解决了扩展难、应用孤岛、重复造轮子等复杂的连接问题。简化了复杂的网络调用关系,从而降低了整体的复杂度,也节省了开发和维护成本。

相关推荐
万能程序员-传康Kk6 分钟前
旅游推荐数据分析可视化系统算法
算法·数据分析·旅游
wusam23 分钟前
Linux系统管理与编程20:Apache
linux·运维·服务器·apache·shell编程
正在走向自律4 小时前
Python 数据分析与可视化:开启数据洞察之旅(5/10)
开发语言·人工智能·python·数据挖掘·数据分析
lilye664 小时前
精益数据分析(49/126):UGC商业模式中消息提醒与内容分享的关键作用
数据挖掘·数据分析
小L爱科研7 小时前
4.7/Q1,GBD数据库最新文章解读
数据库·机器学习·数据分析·回归·健康医疗
Johny_Zhao7 小时前
Ubuntu安装部署Zabbix网络监控平台和设备配置添加
linux·网络·mysql·网络安全·信息安全·云计算·apache·zabbix·shell·yum源·系统运维·itsm
kngines8 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估
postgresql·数据分析·存储过程·jsonb·pg_cron·ks值·影子测试机制
想看雪的瓜8 小时前
Nature图形复现—两种快速绘制热图的方法
信息可视化·数据挖掘·数据分析
镜舟科技8 小时前
湖仓一体架构在金融典型数据分析场景中的实践
starrocks·金融·架构·数据分析·湖仓一体·物化视图·lakehouse
搬砖的工人9 小时前
Docker环境下的Apache NiFi安装实践踩坑记录
docker·容器·apache