利用大模型MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7实现零样本分类

概念

1、零样本分类:在没有样本标签的情况下对文本进行分类。

2、nli:(Natural Language Inference),自然语言推理

3、xnli:(Cross-Lingual Natural Language Inference) ,是一种数据集,支持15种语言,数据集包含10个领域,每个领域包含750条样本,10个领域共计7500条人工标注的英文测试样本,组成了112500对英文--其他语种的标注对。每条数据样本,由两个句子组成,分别是前提和假设,前提和假设之间的关系,有entailment(蕴含)、contradiction(矛盾)、neutral(中立)三类。

模型

1、手动下载MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7到本地,url:MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 at main

2、Git下载:

bash 复制代码
git lfs install
git clone https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7

代码:

保存为m.py文件

python 复制代码
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
model_name = "mDeBERTa-v3-base-xnli-multilingual-nli-2mil7"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
for aspect in ['camera', 'phone']:
   print(aspect, classifier('The camera quality of this phone is amazing.',  text_pair=aspect))

输出:

bash 复制代码
[ipa@comm-agi-p]$ python m.py
camera [{'label': 'entailment', 'score': 0.9938687682151794}]
phone [{'label': 'entailment', 'score': 0.9425390362739563}]
相关推荐
苏苏susuus7 小时前
机器学习:集成学习概念和分类、随机森林、Adaboost、GBDT
机器学习·分类·集成学习
人肉推土机7 小时前
AI Agent 架构设计:ReAct 与 Self-Ask 模式对比与分析
人工智能·大模型·llm·agent
中杯可乐多加冰12 小时前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
audyxiao0011 天前
计算机视觉顶刊《International Journal of Computer Vision》2025年5月前沿热点可视化分析
图像处理·人工智能·opencv·目标检测·计算机视觉·大模型·视觉检测
CM莫问2 天前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
FrankHuang8882 天前
使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类
算法·机器学习·ai·分类
大模型铲屎官2 天前
【深度学习-Day 23】框架实战:模型训练与评估核心环节详解 (MNIST实战)
人工智能·pytorch·python·深度学习·大模型·llm·mnist
狂小虎2 天前
01 Deep learning神经网络的编程基础 二分类--吴恩达
深度学习·神经网络·分类
亿牛云爬虫专家2 天前
NLP驱动网页数据分类与抽取实战
python·分类·爬虫代理·电商·代理ip·网页数据·www.goofish.com
一 铭2 天前
Github Copilot新特性:Copilot Spaces-成为某个主题的专家
人工智能·大模型·llm