AI「反腐」,德国马普所结合 NLP 和 DNN 开发抗蚀合金

内容一览 :在被不锈钢包围的世界中,我们可能都快忘记了腐蚀的存在。然而,腐蚀存在于生活中的方方面面。无论是锈迹斑斑的钢钉,老化漏液的电线,还是失去光泽的汽车,这一切的发生都与腐蚀有关。据统计,全世界每年由金属腐蚀带来的经济损失超过

2.5 万亿美元,远超过其他自然灾害。其中,腐蚀在中国造成的经济损失约 3,949 亿美元,占中国 GDP 的 4.2%。正因为此,研究者们一直在探索抗蚀性能更好的合金或是金属保护膜。如今,在优化材料抗蚀性能的过程中,AI 派上了用场。

关键词:自然语言处理 深度神经网络 腐蚀

作者 | 雪菜
编辑 | 三羊

本文首发于 HyperAI 超神经微信公众平台~

据美国腐蚀工程师协会 (NACE, National Association of Corrosion Engineers) 统计,2013 年全世界由腐蚀造成的经济损失超 2.5 万亿。同时,中国也饱受腐蚀的困扰,经济损失约 3,949 亿美元,占当年 GDP 的 4.2%,较其他发达国家比例略高。

作为对比,2008 年汶川大地震造成的经济损失约 1,100 亿美元。也就是说,早在 2013 年,仅腐蚀为我国带来的经济损失,就超过了 3 个汶川大地震。
表 1:2013 年世界各地因腐蚀造成的经济损失(单位:十亿美元)

为破解腐蚀难题,研究者们在致力于提升材料强度的同时,也在不断寻找提升材料抗蚀性能的方法。 借助 AI,他们已经取得了一定的进展,如对高温下合金的腐蚀机制进行了预测,对钢铁的大气腐蚀速率和钢筋混凝土的环境腐蚀进行了分析,并能够用卷积神经网络 (CNN) 从图像中判断材料的腐蚀形式。

然而,机器学习模型的输入数据多为数值数据。但在金属材料的加工和分析中,除了 pH 值、测试温度等数值数据,还有材料类型等分类数据及热处理过程、测试方法等文本数据。传统的机器学习模型无法对所有数据进行彻底读取和分析,预测准确率较低。

为此,德国马克思普朗克铁研究所 (MPIE, Max-Planck-Institut für Eisenforschung) 将深度神经网络 (DNN) 和自然语言处理 (NLP) 相结合开发了进程感知 DNN。 这一模型可以将数值数据和文本数据结合处理,其准确率较其他模型提升了 15%。

同时他们将金属的物理化学特性转换为描述符,构建了特征变换 DNN, 可以用于预测训练集中不存在的元素对抗蚀性能的影响。这项研究已于 2023 年 8 月发表于《Science Advances》,标题为「Enhancing corrosion-resistant alloy design through natural language processing and deep learning」。


相关研究已发表于《Science Advances》

论文链接:

https://www.science.org/doi/10.1126/sciadv.adg7992

进程感知 DNN

模型设计

本研究数据集为 5 类 769 种合金的点蚀电位,数据集中包括数值数据、分类数据及文本数据。其中,数值数据被直接输入模型中,分类数据通过顺序编号转为数值输入模型,而文本型数据则通过 NLP 架构处理后输入模型。

NLP 架构主要分为三个部分,包括词汇标记、向量化和向量序列的处理。

词汇标记过程中,每个词汇被一个特定的整型数字 (integer token) 替换。通过词汇标记,一个词组或句子就被转换为一个整型向量 (integer vector)。

词汇标记之后,虽然文本数据转换成了数值,但数值之间没有任何关联,无法承载原文的语义。因此,整型向量会经过向量化转换为 n 维浮点型向量。在训练过程中, 每个词汇的权重被不断优化。训练完成后,向量间的接近度则对应着它们的语义相似性。

最后,n 维浮点型向量通过长短期记忆递归神经网络 (LSTM) 转换为单一向量,进入输入层。LSTM 可以通过门函数,识别词汇间的长期依赖性。因此,LSTM 可以从给定语句中找出关键的相关词汇,将语句中最重要的部分传递给 DNN 的输入层。


图 1:进程感知 DNN 模型结构

A:NLP 数据处理工作流

B:进程感知 DNN 模型示意图

训练及验证

训练之后,研究者对模型的绝对平均误差进行了汇总。进程感知 DNN 的平均绝对误差约 150 mV,较简单 DNN 降低了 20 mV。预测点蚀电位和实际点蚀电位之间的 R2 为 0.78 ± 0.06, 较简单 DNN 的 0.61 ± 0.04 更高。上述结果说明,在对文本数据进行分析之后,进程感知 DNN 的性能优于简单 DNN 模型。


图 2:进程感知 DNN 训练结果

A:训练及验证过程中的平均绝对误差,其中红线为简单 DNN 模型的平均绝对误差;

B:进程感知 DNN 与简单 DNN 模型的结果对比。

合金组分优化

为了对比进程感知 DNN 与简单 DNN 在合金组分优化过程中的差异,研究者从相似的合金组分开始,用相同的学习率,利用两种模型分别对合金组分进行了优化。


图 3:组分优化结果

A&B:铁基合金优化结果;

C&D:Ni-Cr-Mo 合金优化结果;

E&F:Al-Cr 合金优化结果;

G&H:高墒合金优化结果。

图中可以看到,两种模型对铁基合金和 FeCrNiCo 高墒合金的优化结果存在部分的相似性,但对其他两种合金的优化结果差异很大。 首先,进程感知 DNN 预测 Mo 元素含量增加,会显著提高铁基合金和 Ni-Cr-Mo 合金的点蚀电位。其次,进程感知 DNN 认为在 Ni-Cr-Mo 合金中,间隙氮和间隙碳可以提升合金的点蚀电位。最后,在 Al-Cr 合金中,Cu 元素也有利于点蚀电位的提升。这些都是简单 DNN 所忽视的。

特征变换 DNN

模型设计

通过合金组分特征化函数「WenAlloys」,合金的组分信息还可以被分解为一系列原子、物理及化学特性,并变换为不同的描述符,作为 DNN 模型的输入值。

表 2:部分特征的变换结果

其中 ci、ri、Xi 及 Ec,i 分别代表原子分数、原子半径、泡利电负性、元素结合能。

训练及验证


图 4:特征变换 DNN 的训练结果

A:模型训练及验证过程中的误差曲线;

B:训练之后预测点蚀电位和实际点蚀电位的回归曲线;

C:特征变换 DNN 及简单 DNN 的结果对比。

训练后,特征变换 DNN 的平均绝对误差约 168 mV,R2 为 0.66,性能较简单 DNN 模型略有提升。

特征变换 DNN 对抗蚀机制的分析

从五类合金中各选出一种进行特征变换,之后输入模型中进行优化。基于优化曲线,输入特征可以被分为两类。一类特征曲线在优化过程中变化显著,超出了训练集中的预期;另一类特征在优化过程中只有微小的变化。


图 5:不同输入特征的优化曲线

图中是 4 个优化过程中发生显著变化的特征,这意味着这些特征可能是提升合金点蚀电位的重要参数。

特征变换 DNN 对 Al-Cu-Sc-Zr 合金的预测

由于特征变换 DNN 的输入中只有组分的原子、物理及化学特征,因此它可以对训练集中不存在的元素进行预测。

在多种合金中,Sc 和 Zr 元素都展现出了对抗蚀性能的提升。因此,研究团队利用特征变换 DNN 对这两种元素对 Al-Cu 合金的影响进行了分析。


图 6:特征变换 DNN 对 Al-Cu-Sc-Zr 合金的点蚀电位预测结果

如图所示,随着 Zr 和 Sc 元素含量的增加,合金的点蚀电位不断提升,说明合金的抗蚀性能有所提高。这一结果验证了特征变换 DNN 对新元素的预测能力。

上述结果说明,将 NLP 与 DNN 结合之后,模型能够读取有关合金加工和测试方法的文本数据, 因此较传统的 DNN 模型性能更好,并能够发现简单 DNN 所忽略的元素对合金抗蚀性能的影响。而特征变换 DNN 则可以从合金的原子、物理及化学性质出发, 对训练集中不存在的元素的性能进行预测。

腐蚀:沉默的金属杀手

2009 年,世界腐蚀组织 (WCO) 将每年的 4 月 24 日确立为世界腐蚀日,以提升公众对腐蚀的认知。作为一种常见的化学现象,腐蚀存在于我们生活中的每个角落。无论是厨房的各种用具,还是家用的各类电器,还有横跨海陆空的的交通工具,乃至独具设计的各种建筑物,都饱受腐蚀的困扰。可以说,有金属的地方就有腐蚀。

金属腐蚀包括化学腐蚀和电化学腐蚀,其中电化学腐蚀的发生更为普遍,危害更大。电化学腐蚀是指两种金属在电解质溶液中形成回路,构成原电池,导致活泼金属被腐蚀的现象。常见的电化学腐蚀包括均匀腐蚀、点蚀、应力腐蚀、间隙腐蚀等。其中,非均匀腐蚀尤其是点蚀等不易被发现的腐蚀形式,对金属的危害更大,极易造成事故。

图 7:常见的电化学腐蚀类型

2013 年 11 月 22 日,山东省青岛市的输油管路由于长期处于高氯和干湿交替环境下,管壁腐蚀减薄,最终发生破裂,导致原油泄漏。之后的清理抢修过程中, 由于现场操作不当,导致原油爆燃,最终造成 62 人死亡,163 人受伤。

腐蚀往往难以察觉,因此避免腐蚀事故需要定期的人工检查和抢修,耗费大量的人力物力。现在,在 AI 的帮助下,我们可以对合金的组成进行优化,找到抗蚀性能更好的材料。 同时,数字化的腐蚀监测系统也正投入使用,帮助我们迅速定位腐蚀电位,让「沉默的杀手」不再沉默。

参考链接:

1\] http://impact.nace.org/documents/Nace-International-Report.pdf \[2\] https://whatispiping.com/corrosion/?expand_article=1 \[3\] https://www.gov.cn/govweb/jrzg/2014-01/11/content_2564654.htm#: **本文首发于 HyperAI 超神经微信公众平台\~**

相关推荐
兰亭妙微38 分钟前
用户体验的真正边界在哪里?对的 “认知负荷” 设计思考
人工智能·ux
13631676419侯44 分钟前
智慧物流与供应链追踪
人工智能·物联网
TomCode先生1 小时前
MES 离散制造核心流程详解(含关键动作、角色与异常处理)
人工智能·制造·mes
zd2005721 小时前
AI辅助数据分析和学习了没?
人工智能·学习
johnny2331 小时前
强化学习RL
人工智能
乌恩大侠1 小时前
无线网络规划与优化方式的根本性变革
人工智能·usrp
放羊郎1 小时前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
王哈哈^_^1 小时前
【数据集+完整源码】水稻病害数据集,yolov8水稻病害检测数据集 6715 张,目标检测水稻识别算法实战训推教程
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
SEOETC2 小时前
数字人技术:虚实交融的未来图景正在展开
人工智能
boonya2 小时前
从阿里云大模型服务平台百炼看AI应用集成与实践
人工智能·阿里云·云计算