基本介绍——数据挖掘

1.数据挖掘的定义

数据挖掘是采用数学的、统计的、人工智能和神经网络等领域的科学方法,如记忆推理、聚类分析、关联分析、决策树、神经网络、基因算法等技术,从大量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。

2.数据挖掘的功能

简单理解就是找出海量的数据所蕴含的具有战略意义的、潜在的规律。数据挖掘综合了各个学科技术,有很多的功能,当前的主要功能如下:分类、聚类、关联规则、预测、偏差的检测等。数据挖掘的一般过程主要包括:

  • 数据处理,主要目的提高数据质量,改善数据挖掘工作,降低成本、提高效率。
  • 数据挖掘,确定一个最适合的模型应用于后处理。
  • 应用理想的模式或用适合的方式将数据表现出来

3. 数据挖掘方法

数据挖掘是一种通过自动或半自动的方法从大量数据中获取有价值的信息的过程。以下是一些常用的数据挖掘方法:

  • 关联规则挖掘:关联规则挖掘用于发现数据集中的频繁项集和它们之间的关联关系,从而揭示数据中隐藏的相关性。
  • 分类与回归:分类和回归是一种通过将数据分为不同类别或预测数值的方法。常用的分类算法包括决策树、朴素贝叶斯、支持向量机等,常用的回归算法包括线性回归、逻辑回归等。
  • 聚类分析:聚类分析是一种将数据集中的对象划分为相似的组的方法,使得同一组内的对象相似度更高,不同组之间的相似度较低。常用的聚类算法包括K均值聚类、层次聚类等。
  • 神经网络:神经网络是由多个连接的神经元组成的计算模型,通过学习自动调整网络中的连接权重来进行模式识别和预测。
  • 关键字提取:关键字提取是从文本数据中识别和提取出最具代表性和重要性的单词或短语的过程,以便更好地理解和分析文本。
  • 异常检测:异常检测用于在数据集中识别和分析与大多数正常模式不同的异常模式。
  • 时间序列分析:时间序列分析用于对按时间顺序排列的数据进行预测和模式分析。常用的时间序列分析方法包括ARIMA模型和指数平滑法等。

这些方法通常会根据具体的应用场景和数据特点进行选择和组合使用,以达到对数据进行发现、预测、优化等目的。

相关推荐
时见先生4 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
li_wen015 小时前
文件系统(八):Linux JFFS2文件系统工作原理、优势与局限
大数据·linux·数据库·文件系统·jffs2
白日做梦Q6 小时前
细粒度图像分类:从双线性CNN到TransFG的技术演进
分类·数据挖掘·cnn
昨夜见军贴06166 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力7 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场7 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌7 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了7 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
你才是臭弟弟7 小时前
什么是真正的“数据湖”(核心)
大数据
醉舞经阁半卷书17 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn