基本介绍——数据挖掘

1.数据挖掘的定义

数据挖掘是采用数学的、统计的、人工智能和神经网络等领域的科学方法,如记忆推理、聚类分析、关联分析、决策树、神经网络、基因算法等技术,从大量数据中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。

2.数据挖掘的功能

简单理解就是找出海量的数据所蕴含的具有战略意义的、潜在的规律。数据挖掘综合了各个学科技术,有很多的功能,当前的主要功能如下:分类、聚类、关联规则、预测、偏差的检测等。数据挖掘的一般过程主要包括:

  • 数据处理,主要目的提高数据质量,改善数据挖掘工作,降低成本、提高效率。
  • 数据挖掘,确定一个最适合的模型应用于后处理。
  • 应用理想的模式或用适合的方式将数据表现出来

3. 数据挖掘方法

数据挖掘是一种通过自动或半自动的方法从大量数据中获取有价值的信息的过程。以下是一些常用的数据挖掘方法:

  • 关联规则挖掘:关联规则挖掘用于发现数据集中的频繁项集和它们之间的关联关系,从而揭示数据中隐藏的相关性。
  • 分类与回归:分类和回归是一种通过将数据分为不同类别或预测数值的方法。常用的分类算法包括决策树、朴素贝叶斯、支持向量机等,常用的回归算法包括线性回归、逻辑回归等。
  • 聚类分析:聚类分析是一种将数据集中的对象划分为相似的组的方法,使得同一组内的对象相似度更高,不同组之间的相似度较低。常用的聚类算法包括K均值聚类、层次聚类等。
  • 神经网络:神经网络是由多个连接的神经元组成的计算模型,通过学习自动调整网络中的连接权重来进行模式识别和预测。
  • 关键字提取:关键字提取是从文本数据中识别和提取出最具代表性和重要性的单词或短语的过程,以便更好地理解和分析文本。
  • 异常检测:异常检测用于在数据集中识别和分析与大多数正常模式不同的异常模式。
  • 时间序列分析:时间序列分析用于对按时间顺序排列的数据进行预测和模式分析。常用的时间序列分析方法包括ARIMA模型和指数平滑法等。

这些方法通常会根据具体的应用场景和数据特点进行选择和组合使用,以达到对数据进行发现、预测、优化等目的。

相关推荐
檐下翻书1731 分钟前
AI + 能源存储:固态电池与氢能技术
人工智能·能源
Hcoco_me2 分钟前
大模型面试题16:SVM 算法详解及实践
算法·数据挖掘·聚类
说私域2 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的C端用户运营研究
人工智能·小程序·用户运营
chen_song_3 分钟前
深度神经网络训练参数优化概论
人工智能·深度学习·神经网络·机器学习·dnn
吃好喝好玩好睡好3 分钟前
OpenHarmony下Electron+Flutter应用自动化测试框架构建全流程指南
大数据·flutter·electron·vr·数据库架构
大模型真好玩4 分钟前
轻松搞定年度报告可视化,五分钟用 AntV + Trae Solo 快速构建智能图表生成器!
前端·人工智能·trae
非著名架构师4 分钟前
智慧城市的“气候大脑“:气象大数据如何优化城市级能源调度与供需平衡
大数据·人工智能·数据分析·智慧城市·风光功率预测·高精度天气预报数据
doris6105 分钟前
制造企业如何实现设备全生命周期管理?
大数据·网络·人工智能
却道天凉_好个秋5 分钟前
OpenCV(四十):Shi-Tomasi角点检测
人工智能·opencv·计算机视觉
jllllyuz5 分钟前
基于极限学习机(ELM)的数据分类:原理、实现与优化
人工智能·分类·数据挖掘