数学表达
一阶多智能体的运动学方程可以描述为
x ˙ i ( t ) = u i ( t ) , i ∈ { 1 , 2 , 3 , ... , N } \dot x_i(t) = u_i(t),i\in\{1,2,3,\dots,N\} x˙i(t)=ui(t),i∈{1,2,3,...,N}
其中 x i ( t ) x_i(t) xi(t)为状态, u i ( t ) u_i(t) ui(t)为控制量,最终期望的结果为
lim t → T ∣ x i ( t ) − x j ( t ) ∣ = 0 \lim_{t\to T} |x_i(t) - x_j(t)| = 0 t→Tlim∣xi(t)−xj(t)∣=0
∣ x i ( t ) − x j ( t ) ∣ = 0 , ∀ t ≥ T |x_i(t)-x_j(t)| = 0, \forall t \ge T ∣xi(t)−xj(t)∣=0,∀t≥T
其中上式中第一个等式表示在时间趋近于 T T T的时候,智能体的状态趋于一致。第二个等式表示在时间超过 T T T的时候智能体的时间已经保持一致。
将一阶多智能体的一致性算法表示为
u i ( t ) = − ∑ j = 1 N a i j ( x i ( t ) − x j ( t ) ) u_i(t) = - \sum_{j=1}^{N}a_{ij}(x_i(t) - x_j(t)) ui(t)=−j=1∑Naij(xi(t)−xj(t))
这里有一个小技巧,如果用矩阵的形式表示的话,那么直接使用拉普拉斯矩阵表示
u ( t ) = − x ( t ) ⋅ L u(t) = - x(t) \cdot L u(t)=−x(t)⋅L
仿真
设置智能体的初始状态为
x = [ 1 2 3 4 ] x = \begin{bmatrix} 1& 2& 3& 4 \end{bmatrix} x=[1234]
智能体的连接为
智能体1 --- 智能体2
| |
| |
智能体4 --- 智能体3
那么拉普拉斯矩阵为
L = [ 2 − 1 0 − 1 − 1 2 − 1 0 0 − 1 2 − 1 − 1 0 − 1 2 ] L = \begin{bmatrix} 2 & -1 & 0 & -1\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ -1 & 0 & -1 & 2\\ \end{bmatrix} L= 2−10−1−12−100−12−1−10−12
仿真代码为(matlab)
matlab
clc;clear;close
x = [1 2 3 4];
u = [];
A = [0 1 0 1;
1 0 1 0;
0 1 0 1;
1 0 1 0;];
B = [2 0 0 0;
0 2 0 0;
0 0 2 0;
0 0 0 2;];
L = B - A;
dt = 0.001;
k = 3;
lambda = 2;
mu = 0.1;
for i = 1:4000
u1 = -x(end,:) * L;
x1 = x(end,:) + u1 * dt;
u = [u;u1];
x = [x;x1];
end
画出控制量的曲线以及状态量曲线
matlab
Fig1 = figure(1);
plot(0.001:0.001:4.001,x,'LineWidth', 1.5);
xlabel('t');
ylabel('x');
legend('agent1','agent2','agent3','agent4');
print(Fig1,'x','-dpng','-r600')
Fig2 = figure(2);
plot(0.001:0.001:4.000,u,'LineWidth', 1.5);
xlabel('t');
ylabel('u');
legend('agent1','agent2','agent3','agent4');
print(Fig2,'u','-dpng','-r600')
状态变量的随时间变化图为
控制量随时间变化图为
可以看到,最终四个智能体的状态全部归于一致。