一阶多智能体的平均一致性

数学表达

一阶多智能体的运动学方程可以描述为
x ˙ i ( t ) = u i ( t ) , i ∈ { 1 , 2 , 3 , ... , N } \dot x_i(t) = u_i(t),i\in\{1,2,3,\dots,N\} x˙i(t)=ui(t),i∈{1,2,3,...,N}

其中 x i ( t ) x_i(t) xi(t)为状态, u i ( t ) u_i(t) ui(t)为控制量,最终期望的结果为
lim ⁡ t → T ∣ x i ( t ) − x j ( t ) ∣ = 0 \lim_{t\to T} |x_i(t) - x_j(t)| = 0 t→Tlim∣xi(t)−xj(t)∣=0

∣ x i ( t ) − x j ( t ) ∣ = 0 , ∀ t ≥ T |x_i(t)-x_j(t)| = 0, \forall t \ge T ∣xi(t)−xj(t)∣=0,∀t≥T

其中上式中第一个等式表示在时间趋近于 T T T的时候,智能体的状态趋于一致。第二个等式表示在时间超过 T T T的时候智能体的时间已经保持一致。

将一阶多智能体的一致性算法表示为
u i ( t ) = − ∑ j = 1 N a i j ( x i ( t ) − x j ( t ) ) u_i(t) = - \sum_{j=1}^{N}a_{ij}(x_i(t) - x_j(t)) ui(t)=−j=1∑Naij(xi(t)−xj(t))

这里有一个小技巧,如果用矩阵的形式表示的话,那么直接使用拉普拉斯矩阵表示
u ( t ) = − x ( t ) ⋅ L u(t) = - x(t) \cdot L u(t)=−x(t)⋅L

仿真

设置智能体的初始状态为
x = [ 1 2 3 4 ] x = \begin{bmatrix} 1& 2& 3& 4 \end{bmatrix} x=[1234]

智能体的连接为

复制代码
智能体1 --- 智能体2
  |          |
  |          | 
智能体4 --- 智能体3

那么拉普拉斯矩阵为
L = [ 2 − 1 0 − 1 − 1 2 − 1 0 0 − 1 2 − 1 − 1 0 − 1 2 ] L = \begin{bmatrix} 2 & -1 & 0 & -1\\ -1 & 2 & -1 & 0\\ 0 & -1 & 2 & -1\\ -1 & 0 & -1 & 2\\ \end{bmatrix} L= 2−10−1−12−100−12−1−10−12

仿真代码为(matlab)

matlab 复制代码
clc;clear;close

x = [1 2 3 4];
u = [];
A = [0 1 0 1;
     1 0 1 0;
     0 1 0 1;
     1 0 1 0;];
B = [2 0 0 0;
     0 2 0 0;
     0 0 2 0;
     0 0 0 2;];
L = B - A;
dt = 0.001;
k = 3;
lambda = 2;
mu = 0.1;

for i = 1:4000
    u1 = -x(end,:) * L;
    x1 = x(end,:) + u1 * dt;

    u = [u;u1];
    x = [x;x1];
end

画出控制量的曲线以及状态量曲线

matlab 复制代码
Fig1 = figure(1);
plot(0.001:0.001:4.001,x,'LineWidth', 1.5);
xlabel('t');
ylabel('x');
legend('agent1','agent2','agent3','agent4');
print(Fig1,'x','-dpng','-r600')

Fig2 = figure(2);
plot(0.001:0.001:4.000,u,'LineWidth', 1.5);
xlabel('t');
ylabel('u');
legend('agent1','agent2','agent3','agent4');
print(Fig2,'u','-dpng','-r600')

状态变量的随时间变化图为

控制量随时间变化图为

可以看到,最终四个智能体的状态全部归于一致。

相关推荐
goodluckyaa6 分钟前
LCR 006. 两数之和 II - 输入有序数组
算法
孤狼warrior7 分钟前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
Σίσυφος190031 分钟前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
xhbaitxl37 分钟前
算法学习day39-动态规划
学习·算法·动态规划
I_LPL38 分钟前
day23 代码随想录算法训练营 回溯专题2
算法·hot100·回溯算法·求职面试
智者知已应修善业39 分钟前
【洛谷P9975奶牛被病毒传染最少数量推导,导出多样例】2025-2-26
c语言·c++·经验分享·笔记·算法·推荐算法
m0_736919101 小时前
C++中的委托构造函数
开发语言·c++·算法
小小小小王王王1 小时前
洛谷-P1886 【模板】单调队列 / 滑动窗口
c++·算法
PPPPPaPeR.1 小时前
光学算法实战:深度解析镜片厚度对前后表面折射/反射的影响(纯Python实现)
开发语言·python·数码相机·算法
看我干嘛!2 小时前
python第五次作业
算法