TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents

本文是LLM系列文章,针对《TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents》的翻译。

TPTU:任务规划和工具使用的LLM Agents

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 评估](#3 评估)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

随着自然语言处理的最新进展,大型语言模型(LLM)已成为各种现实世界应用程序的强大工具。尽管LLM的能力很强,但其内在的生成能力可能不足以处理复杂的任务,而复杂的任务需要任务规划和外部工具的使用相结合。在本文中,我们首先提出了一个为基于LLM的人工智能代理量身定制的结构化框架,并讨论了解决复杂问题所需的关键能力。在这个框架内,我们设计了两种不同类型的代理(即一步代理和顺序代理)来执行推理过程。随后,我们使用各种LLM实例化框架,并评估它们在典型任务上的任务规划和工具使用(TPTU)能力。通过强调关键发现和挑战,我们的目标是为研究人员和从业者提供有用的资源,以在他们的人工智能应用中利用LLM的力量。我们的研究强调了这些模型的巨大潜力,同时也确定了需要更多调查和改进的领域。

1 引言

2 方法

3 评估

4 相关工作

5 结论

在本文中,我们介绍了一个专门为基于LLM的人工智能代理设计的结构化框架,重点介绍了它们在任务规划和工具使用方面的能力。该框架,再加上我们为推理过程分配的两种不同类型的代理的设计,允许对当前开源LLM的能力进行全面评估,从而对其有效性产生关键见解。此外,我们的研究强调了LLM在管理复杂任务方面的巨大潜力,揭示了它们在未来研发中的令人兴奋的前景。随着我们对这些模型的不断探索和改进,我们更接近于在广泛的现实世界应用中释放它们的全部潜力。

相关推荐
桃花键神10 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜31 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen1 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck3 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409663 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭3 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python