TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents

本文是LLM系列文章,针对《TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents》的翻译。

TPTU:任务规划和工具使用的LLM Agents

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 评估](#3 评估)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

随着自然语言处理的最新进展,大型语言模型(LLM)已成为各种现实世界应用程序的强大工具。尽管LLM的能力很强,但其内在的生成能力可能不足以处理复杂的任务,而复杂的任务需要任务规划和外部工具的使用相结合。在本文中,我们首先提出了一个为基于LLM的人工智能代理量身定制的结构化框架,并讨论了解决复杂问题所需的关键能力。在这个框架内,我们设计了两种不同类型的代理(即一步代理和顺序代理)来执行推理过程。随后,我们使用各种LLM实例化框架,并评估它们在典型任务上的任务规划和工具使用(TPTU)能力。通过强调关键发现和挑战,我们的目标是为研究人员和从业者提供有用的资源,以在他们的人工智能应用中利用LLM的力量。我们的研究强调了这些模型的巨大潜力,同时也确定了需要更多调查和改进的领域。

1 引言

2 方法

3 评估

4 相关工作

5 结论

在本文中,我们介绍了一个专门为基于LLM的人工智能代理设计的结构化框架,重点介绍了它们在任务规划和工具使用方面的能力。该框架,再加上我们为推理过程分配的两种不同类型的代理的设计,允许对当前开源LLM的能力进行全面评估,从而对其有效性产生关键见解。此外,我们的研究强调了LLM在管理复杂任务方面的巨大潜力,揭示了它们在未来研发中的令人兴奋的前景。随着我们对这些模型的不断探索和改进,我们更接近于在广泛的现实世界应用中释放它们的全部潜力。

相关推荐
麻雀无能为力19 分钟前
深度学习计算
人工智能·深度学习
周杰伦_Jay1 小时前
【向量检索与RAG全流程解析】HNSW原理、实践及阿里云灵积DashScope嵌入
人工智能·阿里云·数据挖掘·云计算·database·1024程序员节
Jason_zhao_MR1 小时前
RK3576机器人核心:三屏异显+八路摄像头,重塑机器人交互与感知
linux·人工智能·嵌入式硬件·计算机视觉·机器人·嵌入式·交互
合作小小程序员小小店1 小时前
web网页,在线%抖音,舆情%分析系统demo,基于python+web+echart+nlp+知识图谱,数据库mysql
数据库·python·自然语言处理·flask·nlp·echarts·知识图谱
mmq在路上2 小时前
YOLO-World: Real-Time Open-Vocabulary Object Detection论文阅读
人工智能·计算机视觉·目标跟踪
萌萌可爱郭德纲2 小时前
基于AI智能算法的装备结构可靠性分析与优化设计技术专题
人工智能·机器学习·支持向量机·发动机·疲劳寿命
jiushun_suanli2 小时前
PyTorch CV模型实战全流程(二)
人工智能·pytorch·python
诺....2 小时前
机器学习库的决策树绘制
人工智能·决策树·机器学习
nju_spy2 小时前
NJU-SME 人工智能(三) -- 正则化 + 分类 + SVM
人工智能·机器学习·支持向量机·逻辑回归·对偶问题·正则化·auc-roc
咚咚王者2 小时前
人工智能之编程基础 Python 入门:第三章 基础语法
人工智能·python