TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents

本文是LLM系列文章,针对《TPTU: Task Planning and Tool Usage of Large Language Model-based AI Agents》的翻译。

TPTU:任务规划和工具使用的LLM Agents

  • 摘要
  • [1 引言](#1 引言)
  • [2 方法](#2 方法)
  • [3 评估](#3 评估)
  • [4 相关工作](#4 相关工作)
  • [5 结论](#5 结论)

摘要

随着自然语言处理的最新进展,大型语言模型(LLM)已成为各种现实世界应用程序的强大工具。尽管LLM的能力很强,但其内在的生成能力可能不足以处理复杂的任务,而复杂的任务需要任务规划和外部工具的使用相结合。在本文中,我们首先提出了一个为基于LLM的人工智能代理量身定制的结构化框架,并讨论了解决复杂问题所需的关键能力。在这个框架内,我们设计了两种不同类型的代理(即一步代理和顺序代理)来执行推理过程。随后,我们使用各种LLM实例化框架,并评估它们在典型任务上的任务规划和工具使用(TPTU)能力。通过强调关键发现和挑战,我们的目标是为研究人员和从业者提供有用的资源,以在他们的人工智能应用中利用LLM的力量。我们的研究强调了这些模型的巨大潜力,同时也确定了需要更多调查和改进的领域。

1 引言

2 方法

3 评估

4 相关工作

5 结论

在本文中,我们介绍了一个专门为基于LLM的人工智能代理设计的结构化框架,重点介绍了它们在任务规划和工具使用方面的能力。该框架,再加上我们为推理过程分配的两种不同类型的代理的设计,允许对当前开源LLM的能力进行全面评估,从而对其有效性产生关键见解。此外,我们的研究强调了LLM在管理复杂任务方面的巨大潜力,揭示了它们在未来研发中的令人兴奋的前景。随着我们对这些模型的不断探索和改进,我们更接近于在广泛的现实世界应用中释放它们的全部潜力。

相关推荐
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream2 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业