最近公共祖先 (LCA) 模板

定义

在树中两个节点的最近公共祖先为:两个点的公共祖先里面离根最远的那个。

查询次数较少的情况

可以通过两次 d f s dfs dfs 解决:第一次 d f s dfs dfs 将根节点到其中一个节点的路径上的节点染色,第一次 d f s dfs dfs 遍历到的最后一个染色节点即为最近公共祖先,时间复杂度为 O ( n ) O(n) O(n)。

查询次数较多的情况

可以通过一遍 d f s dfs dfs 预处理求出各节点 i i i 所在的层数 h [ i ] h[i] h[i],和倍增数组 p a r par par : p a r [ i ] [ j ] par[i][j] par[i][j] 为与 i i i 距离为 2 j 2^j 2j 的祖先节点。然后设查询的两个节点为 u u u 和 v v v,设 h [ u ] ≥ [ v ] h[u]\ge[v] h[u]≥[v] ,若 h [ u ] > h [ v ] h[u]>h[v] h[u]>h[v] 则先将 u u u 上移至和 v v v 同一层。之后 u u u 和 v v v 处于同一层, 此时若 u u u 和 v v v 为同一节点,则 v v v 即为最近公共祖先;否则将 u u u 和 v v v 同时尽可能地上移且保证移动后的 u u u 和 v v v 为不同的节点,无法移动之后 u u u 和 v v v 的父节点即为最近公共祖先。预处理的时间复杂度为 O ( n log n ) O(n\text{log}n) O(nlogn),单次查询的时间复杂度为 O ( log n ) O(\text{log}n) O(logn)。求 l c a lca lca 的代码如下:

cpp 复制代码
int lca(int p, int q) {//这里用整数代表节点,若存在相同值的节点则用节点指针
    if (h[p] < h[q])
        swap(p, q);
    for (int dis = h[p] - h[q], i = 0; dis; i++, dis >>= 1)
        if (dis & 1)
            p = par[p][i];
    if (p == q)
        return p;
    for (int i = i0; i >= 0; i--)// i的初值i0可设为ceil(logn)
        if (par[p][i] != par[q][i]) {
            p = par[p][i];
            q = par[q][i];
        }
    return par[p][0];
}

完整的例子包括生成倍增数组等操作可以参考 二叉树的最近公共祖先 这道题的倍增做法:

cpp 复制代码
class Solution {
public:
    TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *p, TreeNode *q) {
        unordered_map<TreeNode *, vector<TreeNode *>> par;
        unordered_map<TreeNode *, int> h;
        function<void(TreeNode *, TreeNode *, int)> dfs = [&](TreeNode *root, TreeNode *p, int lev) {
            if (!root)
                return;
            h[root] = lev;
            par[root] = vector<TreeNode *>(18);
            par[root][0] = p;
            for (int i = 1; i < 18; i++)
                par[root][i] = par[par[root][i - 1]][i - 1];
            dfs(root->left, root, lev + 1);
            dfs(root->right, root, lev + 1);
        };
        dfs(root, root, 0);
        if (h[p] < h[q])
            swap(p, q);
        for (int dis = h[p] - h[q], i = 0; dis; i++, dis >>= 1)
            if (dis & 1)
                p = par[p][i];
        if (p == q)
            return p;
        for (int i = 17; i >= 0; i--)
            if (par[p][i] != par[q][i]) {
                p = par[p][i];
                q = par[q][i];
            }
        return par[p][0];
    }
};
相关推荐
前端小L4 小时前
贪心算法专题(十):维度权衡的艺术——「根据身高重建队列」
javascript·算法·贪心算法
方得一笔4 小时前
自定义常用的字符串函数(strlen,strcpy,strcmp,strcat)
算法
Xの哲學4 小时前
Linux SMP 实现机制深度剖析
linux·服务器·网络·算法·边缘计算
Thera7774 小时前
状态机(State Machine)详解:原理、优缺点与 C++ 实战示例
开发语言·c++
linux开发之路4 小时前
C++高性能日志库开发实践
c++·c++项目·后端开发·c++新特性·c++校招
wuk9984 小时前
使用PCA算法进行故障诊断的MATLAB仿真
算法·matlab
额呃呃4 小时前
二分查找细节理解
数据结构·算法
无尽的罚坐人生5 小时前
hot 100 283. 移动零
数据结构·算法·双指针
刻BITTER5 小时前
在TRAE 上安装PlatformIO
c++·单片机·嵌入式硬件·arduino
永远都不秃头的程序员(互关)5 小时前
C++动态数组实战:从手写到vector优化
c++·算法