Hugging Face实战-系列教程3:AutoModelForSequenceClassification文本2分类

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在notebook中进行
本篇文章配套的代码资源已经上传

下篇内容:
Hugging Face实战-系列教程4:padding与attention_mask

​输出我们需要几个输出呢?比如说这个cls分类,我们做一个10分类,可以吗?对每一个词做10分类可以吗?预测下一个词是什么可以吗?是不是也可以!

在我们的NLP任务中,相比图像任务有分类有回归,NLP有回归这一说吗?我们要做的所有任务都是分类,就是把分类做到哪儿而已,不管做什么都是分类。

比如我们刚刚导入的两个英语句子,是对序列做情感分析,就是一个二分类,用序列做分类,你想导什么输出头,你就导入什么东西就可以了,简不简单?好简单是不是,上代码:

python 复制代码
from transformers import AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.logits.shape)

导入一个序列分类的包,还是选择checkpoint这个名字,选择分词器,导入模型,将模型打印一下:

DistilBertForSequenceClassification(

(distilbert): DistilBertModel(

(embeddings): Embeddings(

(word_embeddings): Embedding(30522, 768, padding_idx=0)

(position_embeddings): Embedding(512, 768)

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(dropout): Dropout(p=0.1, inplace=False)

)

(transformer): Transformer(

(layer): ModuleList(

(0): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(1): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(2): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(3): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(4): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(5): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

)

)

)

(pre_classifier): Linear(in_features=768, out_features=768, bias=True)

(classifier): Linear(in_features=768, out_features=2, bias=True)

(dropout): Dropout(p=0.2, inplace=False)

)

看看多了什么?前面我们说对每一个词生成一个768向量,最后就连了两个全连接层:

(pre_classifier): Linear(in_features=768, out_features=768, bias=True)

(classifier): Linear(in_features=768, out_features=2, bias=True)

(dropout): Dropout(p=0.2, inplace=False)

这个logits就是输出结果了:

print(outputs.logits.shape)

torch.Size([2, 2])

这个2*2表示的就是样本为2(两个英语句子),分类是2分类,但是我们需要得到最后的分类概率,再加上softmax:

python 复制代码
import torch
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(predictions)

dim=-1就是沿着最后一个维度进行计算,最后返回的就是概率值:

tensor([[1.5446e-02, 9.8455e-01], [9.9946e-01, 5.4418e-04]], grad_fn=SoftmaxBackward0)

概率知道了,类别的概率是什么呢?调一个内置的id to label配置:

python 复制代码
model.config.id2label
{0: 'NEGATIVE', 1: 'POSITIVE'}

也就是说,第一个句子负面情感的概率为1.54%,正面的概率情感为98.46%

下篇内容:
Hugging Face实战-系列教程4:padding与attention_mask

相关推荐
Keep_Trying_Go23 分钟前
论文STEERER人群计数,车辆计数以及农作物计数算法详解(pytorch)
人工智能·pytorch·python
gzu_0125 分钟前
基于昇腾 配置pytorch环境
人工智能·pytorch·python
汗流浃背了吧,老弟!4 小时前
语言模型(Language Model)介绍
人工智能·语言模型·自然语言处理
高洁015 小时前
具身智能-8家国内外典型具身智能VLA模型深度解析
深度学习·神经网络·aigc·transformer·知识图谱
李昊哲小课5 小时前
wsl ubuntu24.04 cuda13 cudnn9 pytorch 显卡加速
人工智能·pytorch·python·cuda·cudnn
钅日 勿 XiName7 小时前
一小时速通Pytorch之神经网络相关知识(三)
人工智能·pytorch·神经网络
DogDaoDao9 小时前
大语言模型四大核心技术架构深度解析
人工智能·语言模型·架构·大模型·transformer·循环神经网络·对抗网络
shayudiandian9 小时前
Transformer结构完全解读:从Attention到LLM
人工智能·深度学习·transformer
一水鉴天10 小时前
整体设计 全面梳理复盘 之37 元级自动化引擎三体项目(Designer/Master/Transformer)划分确定 + 自用规划工具(增强版)
开发语言·算法·transformer·公共逻辑
Danceful_YJ17 小时前
33.Transformer架构
人工智能·pytorch·深度学习