Hugging Face实战-系列教程3:AutoModelForSequenceClassification文本2分类

🚩🚩🚩Hugging Face 实战系列 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在notebook中进行
本篇文章配套的代码资源已经上传

下篇内容:
Hugging Face实战-系列教程4:padding与attention_mask

​输出我们需要几个输出呢?比如说这个cls分类,我们做一个10分类,可以吗?对每一个词做10分类可以吗?预测下一个词是什么可以吗?是不是也可以!

在我们的NLP任务中,相比图像任务有分类有回归,NLP有回归这一说吗?我们要做的所有任务都是分类,就是把分类做到哪儿而已,不管做什么都是分类。

比如我们刚刚导入的两个英语句子,是对序列做情感分析,就是一个二分类,用序列做分类,你想导什么输出头,你就导入什么东西就可以了,简不简单?好简单是不是,上代码:

python 复制代码
from transformers import AutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.logits.shape)

导入一个序列分类的包,还是选择checkpoint这个名字,选择分词器,导入模型,将模型打印一下:

DistilBertForSequenceClassification(

(distilbert): DistilBertModel(

(embeddings): Embeddings(

(word_embeddings): Embedding(30522, 768, padding_idx=0)

(position_embeddings): Embedding(512, 768)

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(dropout): Dropout(p=0.1, inplace=False)

)

(transformer): Transformer(

(layer): ModuleList(

(0): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(1): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(2): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(3): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(4): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

(5): TransformerBlock(

(attention): MultiHeadSelfAttention(

(dropout): Dropout(p=0.1, inplace=False)

(q_lin): Linear(in_features=768, out_features=768, bias=True)

(k_lin): Linear(in_features=768, out_features=768, bias=True)

(v_lin): Linear(in_features=768, out_features=768, bias=True)

(out_lin): Linear(in_features=768, out_features=768, bias=True)

)

(sa_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

(ffn): FFN(

(dropout): Dropout(p=0.1, inplace=False)

(lin1): Linear(in_features=768, out_features=3072, bias=True)

(lin2): Linear(in_features=3072, out_features=768, bias=True)

)

(output_layer_norm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

)

)

)

)

(pre_classifier): Linear(in_features=768, out_features=768, bias=True)

(classifier): Linear(in_features=768, out_features=2, bias=True)

(dropout): Dropout(p=0.2, inplace=False)

)

看看多了什么?前面我们说对每一个词生成一个768向量,最后就连了两个全连接层:

(pre_classifier): Linear(in_features=768, out_features=768, bias=True)

(classifier): Linear(in_features=768, out_features=2, bias=True)

(dropout): Dropout(p=0.2, inplace=False)

这个logits就是输出结果了:

print(outputs.logits.shape)

torch.Size([2, 2])

这个2*2表示的就是样本为2(两个英语句子),分类是2分类,但是我们需要得到最后的分类概率,再加上softmax:

python 复制代码
import torch
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(predictions)

dim=-1就是沿着最后一个维度进行计算,最后返回的就是概率值:

tensor([[1.5446e-02, 9.8455e-01], [9.9946e-01, 5.4418e-04]], grad_fn=SoftmaxBackward0)

概率知道了,类别的概率是什么呢?调一个内置的id to label配置:

python 复制代码
model.config.id2label
{0: 'NEGATIVE', 1: 'POSITIVE'}

也就是说,第一个句子负面情感的概率为1.54%,正面的概率情感为98.46%

下篇内容:
Hugging Face实战-系列教程4:padding与attention_mask

相关推荐
User_芊芊君子8 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
聆风吟º13 小时前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
工程师老罗16 小时前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
JarryStudy16 小时前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
Eloudy18 小时前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
Rorsion19 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
机器学习之心20 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
是店小二呀21 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
骇城迷影21 小时前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
mailangduoduo21 小时前
零基础教学连接远程服务器部署项目——VScode版本
服务器·pytorch·vscode·深度学习·ssh·gpu算力