MaPLe: Multi-modal Prompt Learning

本文也是LLM系统的文章,主要是面向多模态的大语言模型,针对《MaPLe: Multi-modal Prompt Learning》的翻译。

MaPLe:多模态提示学习

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)

摘要

CLIP等预先训练的视觉语言(V-L)模型对下游任务表现出了出色的泛化能力。但是,它们对输入文本提示的选择很敏感,需要仔细选择提示模板才能执行良好的操作。受自然语言处理(NLP)文献的启发,最近的CLIP自适应方法学习提示作为文本输入,以微调CLIP用于下游任务。我们注意到,在CLIP的单个分支(语言或视觉)中使用提示来调整表示是次优的,因为它不允许在下游任务上动态调整两个表示空间的灵活性。在这项工作中,我们提出了视觉和语言分支的多模式提示学习(MaPLe),以提高视觉和语言表征之间的一致性。我们的设计促进了视觉语言提示之间的强耦合,以确保相互协同,并阻止学习独立的单一模式解决方案。此外,我们在不同的早期阶段学习不同的提示,以逐步建立阶段特征关系的模型,从而实现丰富的上下文学习。我们评估了我们的方法在三个代表性任务上的有效性,即对新类的泛化、新的目标数据集和看不见的领域迁移。与最先进的方法CoCoOp相比,MaPLe表现出良好的性能,在11个不同的图像识别数据集上平均,在新类别上实现了3.45%的绝对增益,在总体谐波平均值上实现了2.72%的绝对增益。我们的代码和预训练模型可在https://github.com/muzairkhattak/multimodalprompt-learning找到.

1 引言

2 相关工作

3 方法

4 实验

5 结论

由于大量可调参数和下游数据集的大小有限,大规模V-L模型(例如CLIP)对下游任务的适应是一个具有挑战性的问题。提示学习是一种高效且可扩展的技术,可以根据新的下游任务定制V-L模型。为此,目前的提示学习方法要么只考虑视觉方面的提示,要么只考虑语言方面的提示。我们的工作表明,对视觉和语言分支进行提示是至关重要的,以使V-L模型适当地适应下游任务。此外,我们提出了一种策略,通过在不同的转换阶段明确地将视觉提示条件化为文本提示,来确保视觉语言模式之间的协同作用。我们的方法提高了对新类别、跨数据集转移和具有域转移的数据集的泛化能力。

相关推荐
LiYingL14 小时前
针对大规模语言模型的离群值安全预训练创新,可防止离群值并保护量化准确性
人工智能·机器学习·语言模型
ekprada15 小时前
Day 37 - 早停策略与模型权重的保存
人工智能·机器学习
致Great15 小时前
Nano Banana提示语精选
人工智能·gpt·chatgpt·开源·agent
文弱_书生15 小时前
关于模型学习策略
人工智能·深度学习·神经网络
牛客企业服务15 小时前
2026年AI面试布局:破解规模化招聘的效率困局
人工智能·面试·职场和发展
gorgeous(๑>؂<๑)15 小时前
【北理工-AAAI26】MODA:首个无人机多光谱目标检测数据集
人工智能·目标检测·计算机视觉·目标跟踪·无人机
嵌入式的飞鱼16 小时前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
serve the people16 小时前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people16 小时前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow
yzx99101316 小时前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能