OpenCV(二十二):均值滤波、方框滤波和高斯滤波

目录

1.均值滤波

2.方框滤波

3.高斯滤波


1.均值滤波

OpenCV中的均值滤波(Mean Filter)是一种简单的滤波技术,用于平滑图像并减少噪声。它的原理非常简单:对于每个像素,将其与其周围邻域内像素的平均值作为新的像素值。

具体的均值滤波原理如下:

  1. 定义滤波器大小:均值滤波器是一个正方形的卷积核,具有固定大小。该大小决定了每个像素使用多少邻域像素进行平均计算。
  2. 遍历图像像素:对于图像中的每个像素,将其与滤波器大小内的邻域像素进行平均计算。
  3. 计算新的像素值:将邻域像素的值相加,然后除以邻域内像素的数量,即可得到新的像素值。
  4. 更新图像:将每个像素的值更新为其对应的新像素值。

均值滤波函数blur()

void cv::blur ( InputArray src,

OutputArray dst,

Size ksize,

Point anchor = Point(-1,-1),

int borderType = BORDER_DEFAULT

)

  • src:待均值滤波的图像,图像的数据类型必须是CV 8U、CV 16U、CV 16S、CV 32F和CV 64F这五种数据类型之一。
  • dst: 均值滤波后的图像,与输入图像具有相同的尺寸和数据类型。
  • ksize:卷积核尺寸。
  • anchor:内核的基准点(锚点),其默认值为(-l,-1)代表内核基准点位于kernel的中心位置。
  • borderType:像素外推法选择标志。

以下是使用OpenCV进行均值滤波的示例代码:

   //均值滤波
    blur(image,image,Size(5,5));

在这个示例代码中,我们加载一张图像image,并定义了一个5x5的滤波器大小。然后,我们调用cv::blur函数对图像进行均值滤波。

cv::blur函数将输入图像作为第一个参数,并使用指定的滤波器大小对其进行平滑处理,然后将结果保存在输出图像中。在这个例子中,我们将图像本身作为输出参数,所以原始图像将会被修改。

结论:均值滤波的卷积核越大,图片的失真越明显,图片会更模糊,如果设置核的大小为(1,1),则结果是原始图像。

2.方框滤波

方框滤波和均值滤波核基本上是一致的,主要的区别是要不要归一化处理,如果使用归一化处理,方框滤波就是均值滤波。

方框滤波函数boxFilter()

void cv::boxFilter ( InputArray src,

OutputArray dst,

int ddepth,

Size ksize,

Point anchor = Point(-1,-1),

bool normalize = true,

int borderType = BORDER_DEFAULT

  • src:输入图像。
  • dst: 输出图像,与输入图像具有相同的尺寸和通道数。
  • ddepth: 输出图像的数据类型(深度),根据输入图像的数据类型不同拥有不同的取值范围。
  • ksize:卷积核尺寸。
  • anchor:内核的基准点(锚点),其默认值为(-1-1)代表内核基准点位于kernel的中心位置。
  • normalize:是否将卷积核进行归一化的标志,默认参数为true,表示进行归一化。
  • borderType:像素外推法选择标志。

示例代码:

     //方框滤波boxFilter()
    Mat result;
   boxFilter(image,result,-1,Size(3,3),Point(-1,-1),false);//不进行归一化

3.高斯滤波

高斯滤波通过使用高斯函数计算像素点的权重,对周围邻域像素进行加权平均,以达到图像平滑的效果。由于高斯函数在中心点附近权重较大,而在离中心点越远的像素权重越小,它能够保留图像的整体结构,并且相对于其他平滑滤波器,它对细节的保留更好。

高斯函数是一个连续的概率分布函数,它的形状是一个钟形曲线,中心点最高,两边逐渐变低。

高斯滤波的原理如下:

  1. 定义滤波器大小和标准差:在使用高斯滤波之前,需要确定滤波器的大小(窗口大小)和标准差。窗口大小决定了滤波器覆盖的像素范围,标准差决定了高斯函数的形状。

  2. 构建高斯滤波器:根据定义的窗口大小和标准差,构建一个高斯函数或者高斯核矩阵。高斯函数是一个二维正态分布曲线,用于计算滤波器中每个像素的权重。

  3. 遍历图像像素:对于图像中的每个像素,高斯滤波器会考虑其周围邻域像素的值。

  4. 计算加权平均:对于每个像素,在滤波器邻域内,根据高斯函数计算相应像素的权重。权重越大表示该像素对平均值的贡献越大。然后将邻域内像素值与相应权重相乘,得到加权和。

  5. 更新图像:将每个像素的值更新为加权和,得到平滑后的图像。

例如

一个3X3的卷积核是:

计算相应像素的权重

将邻域内像素值与相应权重相乘,得到加权和,将像素的值更新为加权和。

OpenCV中提供了**高斯滤波函数cv2.GaussianBlur()**来实现高斯滤波。

void cv::GaussianBlur (InputArray src,

OutputArray dst,

Size ksize,

double sigmaX,

double sigmaY = 0,

int borderType = BORDER DEFAULT

)

  • src:待高斯滤波图像,数据类型必须为CV 8U,CV 16U,CV 16S,CV 32F或CV 64F。
  • dst:输出图像,与输入图像src具有相同的尺寸、通道数和数据类型。
  • ksize: 高斯滤波器的尺寸,滤波器可以不为正方形,但是必须是正奇数。如果尺寸为0,则由标准偏差计算尺寸。
  • sigmaX:X方向的高斯滤波器标准偏差。
  • sigmayY:Y方向的高斯滤波器标准偏差: 如果输入量为0,则将其设置为等于sigmax,如果两个轴的标差均为0,则根据输入的高斯滤波器尺寸计算标准偏差。
  • borderType:像素外推法选择标志。

示例代码:

    //调用高斯滤波函数GaussianBlur()进行滤波
    GaussianBlur(image,image,Size(5,5),10,20);

注意:在高斯滤波当中,核的宽度和高度可以不相同,但都要是奇数。

相关推荐
开发者每周简报11 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神15 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
波音彬要多做16 分钟前
41 stack类与queue类
开发语言·数据结构·c++·学习·算法
捕鲸叉17 分钟前
C++软件设计模式之外观(Facade)模式
c++·设计模式·外观模式
普密斯科技44 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
我感觉。1 小时前
【图像处理lec8】彩色图像处理
图像处理·彩色图像处理
日出等日落1 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
只做开心事1 小时前
C++之红黑树模拟实现
开发语言·c++