数字图像基础

数字图像基础

人眼感知视觉

  • 锥状体(亮视觉)+ 杆状体(暗视觉)
  • 人的视觉系统感知的亮度是进入人眼光强的对数函数
  • 亮度适应现象: 视觉系统不能同时在一个范围内工作,而通过改变其整个灵敏度来实现

光与电磁波谱

  • 可见光波长范围:0.43微米-0.79微米
  • 单色光的唯一属性是强度,也称灰度
  • 彩色光属性:发光强度、光通量和亮度

图像感知与获取

  • 滤光器 + 传感器(光二极管)
  • f ( x , y ) = i ( x , y ) r ( x , y ) f(x, y) = i(x, y) r(x, y) f(x,y)=i(x,y)r(x,y),其中 i ( x , y ) i(x, y) i(x,y) r ( x , y ) r(x, y) r(x,y) 分别为入射分量和反射分量

图像取样与量化

  • 目的:将连续的图像转换为数字形式
  • 对坐标值进行数字化为取样;对幅值数字化称为量化
  • 量化的精度依赖于所用的离散级数和取样信号的噪声
  • 数字图像表示
    • 显示成灰度阵列
    • 显示为二维数字阵列
  • 离散灰度级
    • 为了便于储存,常取2的整数次幂
    • 动态范围:系统中最大可度量灰度与最小可检测灰度之比
      • 上限取决于饱和度,下限取决于噪声
    • 对比度:图像中最高与最低灰度级间的灰度差
    • k 比特图像:图像有 2 k 2^k 2k 个灰度级,需要 M × N × k M\times N\times k M×N×k 比特来储存
  • 空间分辨率
    • 度量方法:每单位距离线对数和每单位距离像素数
  • 灰度分辨率
    • 定义:用于量化灰度的比特数,一般为8比特
  • 图像内插
    • 基本的图像重取样方法,通过内插来调整图像的大小
    • 最邻近内插:会导致某些直边缘的严重失真
    • 双线性内插: v ( x , y ) = a x + b y + c x y + d v(x,y)=ax+by+cxy+d v(x,y)=ax+by+cxy+d
    • 双三次内插: v ( x , y ) = ∑ i = 0 3 ∑ j = 0 3 a i , j x i y j v(x,y)=\sum^3_{i=0}\sum^3_{j=0}a_{i,j}x^iy^j v(x,y)=∑i=03∑j=03ai,jxiyj
  • 像素间基本关系
    • 相邻像素(4邻域): ( x + 1 , y ) , ( x − 1 , y ) , ( x , y + 1 ) , ( x , y − 1 ) (x+1,y),(x-1,y),(x,y+1),(x,y-1) (x+1,y),(x−1,y),(x,y+1),(x,y−1)
    • 对角相邻像素(与相邻像素共称为8邻域): ( x − 1 , y + 1 ) , ( x + 1 , y + 1 ) , ( x − 1 , y − 1 ) , ( x + 1 , y − 1 ) (x-1,y+1),(x+1,y+1),(x-1,y-1),(x+1,y-1) (x−1,y+1),(x+1,y+1),(x−1,y−1),(x+1,y−1)
    • 邻接性、连通性、区域与边界
      • 4邻接、8邻接、m邻接
      • 闭合通路、连通分量、联通集
      • 内边界、外边界
      • 一个有限区域的边界形成一条闭合通路
  • 距离度量
    • 距离或度量必须满足三个条件:
      • D ( p , q ) ≥ 0 D(p,q)≥0 D(p,q)≥0, D ( p , q ) = 0 D(p,q)=0 D(p,q)=0 当且仅当 p = q p=q p=q
      • D ( p , q ) = D ( q , p ) D(p,q)=D(q,p) D(p,q)=D(q,p)
      • D ( p , z ) ≤ D ( p , q ) + D ( q , z ) D(p,z)≤D(p,q)+D(q,z) D(p,z)≤D(p,q)+D(q,z)
    • 欧式距离: D e ( p , q ) = [ ( x − s ) 2 + ( y − t ) 2 ) ] 1 2 D_e(p,q)=[(x-s)^2+(y-t)^2)]^{\frac{1}{2}} De(p,q)=[(x−s)2+(y−t)2)]21
    • D 4 D_4 D4(城市街区距离): D 4 ( p , q ) = ∣ x − s ∣ + ∣ y − t ∣ D_4(p,q)=|x-s|+|y-t| D4(p,q)=∣x−s∣+∣y−t∣
      • 其中 D 4 = 1 D_4 = 1 D4=1 的像素是 ( x , y ) (x,y) (x,y) 的4邻域
    • D 8 D_8 D8 (棋盘距离): D 8 ( p , q ) = m a x ( ∣ x − s ∣ , ∣ y − t ∣ ) D_8(p,q)=max(|x-s|,|y-t|) D8(p,q)=max(∣x−s∣,∣y−t∣)
      • 其中 D 8 = 1 D_8 = 1 D8=1 的像素是 ( x , y ) (x,y) (x,y) 的8邻域
  • 数学工具
    • 阵列与矩阵操作
    • 线性操作与非线性操作
    • 算术操作:对应像素间的加减乘除
      • 对含噪声图片进行图像平均
      • 增强差别的图像相减
      • 使用图像相乘或相除来矫正阴影
      • 图像标准化操作(0-K): f m = f − m i n ( f ) ; f s = K [ f m / m a x ( f m ) ] f_m=f-min(f);\ f_s=K[f_m/max(f_m)] fm=f−min(f); fs=K[fm/max(fm)]
    • 集合与逻辑操作
      • 灰度图像的补集: A c = { ( x , y , K − z ∣ ( x , y , z ) ∈ A } A^c=\{(x,y,K-z|(x,y,z)\in A\} Ac={(x,y,K−z∣(x,y,z)∈A}
      • 灰度图像的并集: A ⋃ B = { m a x z ( a , b ) ∣ a ∈ A , b ∈ B } A\bigcup B=\{max_z(a,b)|a\in A,b \in B\} A⋃B={maxz(a,b)∣a∈A,b∈B}
    • 空间操作
      • 单像素操作:以灰度为基础直接改变单个像素的值, s = T ( z ) s=T(z) s=T(z)
        邻域操作:如取平均, g ( x , y ) = 1 m n ∑ ( r , c ) ∈ S x y f ( r , c ) g(x,y)=\frac{1}{mn}\sum {(r,c)\in S{xy}}f(r,c) g(x,y)=mn1∑(r,c)∈Sxyf(r,c)
      • 几何空间变换与图像配准:仿射变换
    • 向量与矩阵操作
    • 图像变换:对输入图像进行变换,在变换域执行指定的任务,再用反变换返回空间域
      • 二维线性变换
        T ( u , v ) = ∑ u = 0 M − 1 ∑ v = 0 N − 1 f ( x , y ) r ( x , y , u , v ) T(u,v)=\sum^{M-1}{u=0}\sum^{N-1}{v=0}f(x,y)r(x,y,u,v) T(u,v)=∑u=0M−1∑v=0N−1f(x,y)r(x,y,u,v)
        f ( x , y ) = ∑ u = 0 M − 1 ∑ v = 0 N − 1 T ( u , v ) s ( x , y , u , v ) f(x,y)=\sum^{M-1}{u=0}\sum^{N-1}{v=0}T(u,v)s(x,y,u,v) f(x,y)=∑u=0M−1∑v=0N−1T(u,v)s(x,y,u,v)
        其中, r ( x , y , u , v ) r(x,y,u,v) r(x,y,u,v) 称为正变换核, s ( x , y , u , v ) s(x,y,u,v) s(x,y,u,v) 称为反变换核
    • 概率方法
      令 z i , i = 0 , 1 , 2 , ... L − 1 z_i,i=0,1,2,...L-1 zi,i=0,1,2,...L−1 表示一幅 M × N M×N M×N 大小数字图像中所有可能的灰度值
      • 灰度级 z k z_k zk 出现的概率: p ( z k ) = n k M N p(z_k)=\frac{n_k}{MN} p(zk)=MNnk
      • 平均灰度: m = ∑ k = 0 L − 1 p ( z k ) = 1 m=\sum^{L-1}_{k=0}p(z_k)=1 m=∑k=0L−1p(zk)=1
      • 灰度的方差: σ 2 = ∑ k = 0 L − 1 ( z k − m ) 2 p ( z k ) \sigma^2=\sum^{L-1}_{k=0}(z_k-m)^2p(z_k) σ2=∑k=0L−1(zk−m)2p(zk)
相关推荐
努力学习的啊张28 分钟前
消息称三星正与 OpenAI 洽谈,有望令 Galaxy AI 整合ChatGPT,三星都要和chatgpt合作了,你会使用chatgpt了吗?
人工智能·chatgpt
Together_CZ28 分钟前
GPT-4 Technical Report——GPT-4技术报告
人工智能·gpt-4
huaqianzkh2 小时前
人工智能大趋势下软件开发的未来
人工智能
酱香编程,风雨兼程3 小时前
深度学习——多层感知机的从零开始实现和简洁实现
人工智能·深度学习
King.6243 小时前
sql工具!好用!爱用!
大数据·数据库·人工智能·sql·学习
GOTXX3 小时前
基于深度学习的手势识别算法
人工智能·深度学习·算法·机器学习·数据挖掘·卷积神经网络
Jurio.3 小时前
【论文笔记】Large Brain Model (LaBraM, ICLR 2024)
大数据·论文阅读·人工智能·深度学习·数据挖掘
EasyCVR4 小时前
ISUP协议视频平台EasyCVR萤石设备视频接入平台银行营业网点安全防范系统解决方案
大数据·人工智能·物联网·安全·音视频·监控视频接入
声网5 小时前
WebRTC 作者加入 OpenAI 主导实时 AI 项目;TTS 小模型 OuteTTS v0.2 发布:声音克隆+多语言
人工智能
剑盾云安全专家5 小时前
AI助力PPT创作:从手动到智能,打造高效演示
人工智能·powerpoint