R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
司南OpenCompass15 分钟前
衡量AI真实科研能力!司南科学智能评测上线
人工智能·多模态模型·大模型评测·司南评测
罗宇超MS19 分钟前
如何看待企业自建AI知识库?
人工智能·alm
土星云SaturnCloud33 分钟前
液冷“内卷”:在局部优化与系统重构之间,寻找第三条路
服务器·人工智能·ai·计算机外设
智界前沿43 分钟前
集之互动AI创意视频解决方案:商业级可控,让品牌创意从“灵感”直达“落地”
人工智能·aigc
baby_hua44 分钟前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
brave and determined1 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
SelectDB1 小时前
Apache Doris 4.0.2 版本正式发布
数据库·人工智能
Solar20251 小时前
TOB企业智能获客新范式:基于数据驱动与AI的销售线索挖掘与孵化架构实践
人工智能·架构
AI营销实验室1 小时前
原圈科技如何以多智能体赋能AI营销内容生产新范式
人工智能