R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
SHIPKING3936 分钟前
【机器学习&深度学习】Ollama、vLLM、LMDeploy对比:选择适合你的 LLM 推理框架
人工智能·深度学习·机器学习
zzywxc78718 分钟前
AI 行业应用:金融、医疗、教育、制造业领域的落地案例与技术实现
android·前端·人工智能·chrome·金融·rxjava
新智元35 分钟前
刚刚,GPT-5 Pro 自证全新数学定理!OpenAI 总裁直呼颠覆,大佬们集体转发
人工智能·openai
新智元41 分钟前
28 岁华人执掌 1.85 万亿科技巨头 AI 大权!一觉醒来,图灵奖得主也要向他汇报
人工智能·openai
居然JuRan1 小时前
从LoRA到QLoRA再到全量微调
人工智能
腾讯云开发者1 小时前
数字化下半场:数智融合如何驱动增长新势能?
人工智能
机器之心1 小时前
字节开源Seed-OSS-36B模型,512k上下文
人工智能·openai
北极的树1 小时前
从源码看Google LangExtract如何应对长文本数据挖掘的挑战
人工智能
coding者在努力1 小时前
深度学习核心技巧
人工智能·深度学习
掘金一周1 小时前
被老板逼出来的“表格生成器”:一个前端的自救之路| 掘金一周 8.21
前端·人工智能·后端