R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
m0_650108241 小时前
多模态大模型 VS. 图像视频生成模型浅析
人工智能·技术边界与协同·mllm与生成模型·技术浅谈
ai_xiaogui1 小时前
Mac苹果版Krita AI一键安装教程:AIStarter+ComfyUI零基础部署全流程(X86/ARM双架构)
arm开发·人工智能·macos·comfyui·一键部署·ai绘画教程·kritaai
lapiii3581 小时前
[智能体设计模式] 第11章:目标设定与监控模式
人工智能·设计模式
这张生成的图像能检测吗2 小时前
(论文速读)WFF-Net:用于表面缺陷检测的可训练权重特征融合卷积神经网络
人工智能·深度学习·神经网络·缺陷检测·图像分割
shayudiandian2 小时前
RNN与LSTM详解:AI是如何“记住”信息的?
人工智能·rnn·lstm
美人鱼战士爱学习2 小时前
2025 Large language models for intelligent RDF knowledge graph construction
人工智能·语言模型·知识图谱
jz_ddk2 小时前
[算法] 算法PK:LMS与RLS的对比研究
人工智能·神经网络·算法·信号处理·lms·rls·自适应滤波
qinyia2 小时前
使用Wisdom SSH的AI多会话功能进行批量命令执行和跨服务器智能运维
运维·人工智能·ssh
YisquareTech2 小时前
如何实现智能补货?EDI与ERP集成打造零售库存的“自动闭环”
大数据·人工智能·零售·伊士格科技·erp集成
观远数据3 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售