R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
人工智能技术咨询.9 分钟前
深度学习—卷积神经网络
人工智能
机器之心9 分钟前
Manus被收购,智谱也定了8天后上市
人工智能·openai
王中阳Go25 分钟前
手把手教你用 Go + Eino 搭建一个企业级 RAG 知识库(含代码与踩坑)
人工智能·后端·go
Coder个人博客1 小时前
Llama.cpp 整体架构分析
人工智能·自动驾驶·llama
江上鹤.1481 小时前
Day 50 CBAM 注意力机制
人工智能·深度学习
deephub1 小时前
大规模向量检索优化:Binary Quantization 让 RAG 系统内存占用降低 32 倍
人工智能·大语言模型·向量检索·rag
人工智能培训1 小时前
深度学习—卷积神经网络(1)
人工智能·深度学习·神经网络·机器学习·cnn·知识图谱·dnn
ㄣ知冷煖★1 小时前
【Google系列】AI智能体技术白皮书
人工智能·agent
新加坡内哥谈技术1 小时前
阿尔茨海默症的成因与风险因素到模型与干预分析
人工智能
张张张三丰1 小时前
【文献】金融市场发展与企业风险管理:来自上海原油期货上市的证据
人工智能·# 相关知识