R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
CM莫问16 分钟前
tokenizer、tokenizer.encode、tokenizer.encode_plus比较
人工智能·python·深度学习·语言模型·大模型·tokenizer·文本表示
nn_302 小时前
利用 deepin-IDE 的 AI 能力,我实现了文件加密扩展
ide·人工智能
沐雨风栉2 小时前
Windows电脑部署SD 3.5结合内网穿透随时随地生成高质量AI图像
人工智能·电脑
mazhafener1233 小时前
5G/4G工业边缘网关 边缘计算 硬核配置强算力
人工智能·5g·边缘计算
百家方案4 小时前
「下载」京东数科-数字孪生智慧园区解决方案:打通园区数据、融合园区业务、集成园区服务、共建园区生态,实现真实与数字孪生园区
人工智能·云计算·智慧园区·数智化园区
MUTA️4 小时前
专业版pycharm与服务器连接
人工智能·python·深度学习·计算机视觉·pycharm
m0_748240444 小时前
《通义千问AI落地—中》:前端实现
前端·人工智能·状态模式
cooldream20095 小时前
RDFS—RDF模型属性扩展解析
人工智能·知识图谱·知识表示
MinIO官方账号5 小时前
使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器实现可迭代式数据集
人工智能·pytorch·python
四口鲸鱼爱吃盐5 小时前
Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python·深度学习·计算机视觉