R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
有Li35 分钟前
稀疏视角CBCT重建的几何感知衰减学习|文献速递-基于深度学习的病灶分割与数据超分辨率
人工智能·深度学习·学习
知来者逆37 分钟前
探索大规模语言模型(LLM)在心理健康护理领域中的应用与潜力
人工智能·gpt·深度学习·神经网络·自然语言处理·chatgpt·llm
weixin_4432906937 分钟前
【阅读记录-章节2】Build a Large Language Model (From Scratch)
人工智能·语言模型·自然语言处理
cts61841 分钟前
NLP开发常见问题
人工智能·机器学习·自然语言处理
三月七(爱看动漫的程序员)43 分钟前
LM2 : A Simple Society of Language Models Solves Complex Reasoning
人工智能·gpt·语言模型·自然语言处理·chatgpt·langchain·1024程序员节
学不会lostfound1 小时前
三、计算机视觉_01图像的基本操作
人工智能·opencv·计算机视觉·pil·卷积池化
小黄人软件2 小时前
【AI协作】让所有用电脑的场景都能在ChatGPT里完成。Canvas :新一代可视化交互,让AI易用易得
人工智能·chatgpt·canvas
知来者逆2 小时前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互
摆烂仙君2 小时前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——单图像表面重建
人工智能·深度学习·计算机视觉
摆烂仙君2 小时前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——多视图一致性
人工智能·深度学习