R-CNN

  • 目标检测、语义分割
    由于我们将区域建议与CNN相结合,我们将我们的方法称为R-CNN:带有CNN特征的区域。

目标检测系统由三个模块组成。第一种方法生成分类独立的区域提案。这些提议定义了可供我们的检测器使用的候选检测集合。第二个模块是一个大型卷积神经网络,从每个区域提取固定长度的特征向量。第三个模块是一组特定于类的线性支持向量机。

流程:

(1)接受一个输入图像,

(2)提取大约2000个自底向上的区域建议

(3)使用大型卷积神经网络(CNN)计算每个建议的特征

(4)使用类特定的线性支持向量机对每个区域进行分类。

相关推荐
L念安dd1 分钟前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python
Faker66363aaa15 分钟前
使用Faster R-CNN实现胚胎发育阶段自动检测与分类——基于R50-FPN模型与COCO数据集训练
分类·r语言·cnn
大模型真好玩33 分钟前
大模型训练全流程实战指南工具篇(六)——OCR工具实战指南(以DeepSeek-OCR-2为例)
人工智能·langchain·deepseek
谁不学习揍谁!43 分钟前
大数据可视化看板:基于电子竞技行业数据大数据可视化分析(详细源码文档等资料)
人工智能·python·信息可视化·stylus
石逸凡1 小时前
智理资产,拿下中台,攻占锦州
人工智能
Mr_Lucifer1 小时前
Duet Space:快手版的 cowork ?
人工智能·ai编程·产品
文艺倾年1 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法
上海合宙LuatOS1 小时前
LuatOS核心库API——【fft 】 快速傅里叶变换
java·前端·人工智能·单片机·嵌入式硬件·物联网·机器学习
硬汉嵌入式2 小时前
CMSIS全家桶再增加个机器学习参考应用与模板软件包CMSIS-MLEK
人工智能·机器学习