信息检索与数据挖掘 |(一)介绍

文章目录

📚信息检索

🐇概念

  • 信息检索是从大型集合 (通常存储在计算机上)中寻找非结构化 (通常是文本)的材料(通常是文档),以满足信息需求。

🐇结构化与非结构化数据

  • 结构化数据 倾向于引用"表格"中的信息,通常允许数值范围和精确匹配查询。
  • 非结构化数据通常引用自由文本,允许关键字查询(包括操作符)以及更复杂的"概念"查询。它是文本文档检索的经典模型。
  • 结构化数据即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据。
  • 非结构化数据是相对于结构化数据而言的,不方便用数据库二维逻辑表来表现的数据。

🐇信息检索的基本假设

  • 集合:一组文档(假设它目前是静态集合)。
  • 目标:检索与用户信息需求相关的文档,并帮助用户完成任务。
  • 经典搜索模型

🐇信息检索小结


🐇附:IR新课题







📚数据挖掘

🐇定义

🐇数据挖掘 vs 机器学习

  • AI说:
    • 数据挖掘和机器学习都是处理大数据的方法,它们之间的区别在于目的和方法。
    • 数据挖掘旨在寻找数据中的模式、规律和关系,以从中提取有价值的信息。数据挖掘的方法是使用各种技术和算法,例如聚类、分类、关联规则挖掘等。
    • 机器学习则是一种人工智能技术,在某种程度上可以看做是数据挖掘的一种扩展。机器学习旨在让计算机根据数据自主学习,建立模型,从而预测、分类或识别未来的数据。机器学习的方法包括监督学习、无监督学习和半监督学习等。

  • 数据挖掘是用来理解事物的。

  • 机器学习是用来预测事物的。

  • 人工智能是用来生成行动的。


  • Data contains value and knowledge.
  • Data mining around us.

🔥分类


🔥聚类
🔥降维

相关推荐
Hacker_LaoYi9 分钟前
【渗透技术总结】SQL手工注入总结
数据库·sql
岁月变迁呀10 分钟前
Redis梳理
数据库·redis·缓存
独行soc11 分钟前
#渗透测试#漏洞挖掘#红蓝攻防#护网#sql注入介绍06-基于子查询的SQL注入(Subquery-Based SQL Injection)
数据库·sql·安全·web安全·漏洞挖掘·hw
AI_NEW_COME36 分钟前
知识库管理系统可扩展性深度测评
人工智能
你的微笑,乱了夏天1 小时前
linux centos 7 安装 mongodb7
数据库·mongodb
工业甲酰苯胺1 小时前
分布式系统架构:服务容错
数据库·架构
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself1 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董2 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
落魄君子2 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘