信息检索与数据挖掘 |(一)介绍

文章目录

📚信息检索

🐇概念

  • 信息检索是从大型集合 (通常存储在计算机上)中寻找非结构化 (通常是文本)的材料(通常是文档),以满足信息需求。

🐇结构化与非结构化数据

  • 结构化数据 倾向于引用"表格"中的信息,通常允许数值范围和精确匹配查询。
  • 非结构化数据通常引用自由文本,允许关键字查询(包括操作符)以及更复杂的"概念"查询。它是文本文档检索的经典模型。
  • 结构化数据即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据。
  • 非结构化数据是相对于结构化数据而言的,不方便用数据库二维逻辑表来表现的数据。

🐇信息检索的基本假设

  • 集合:一组文档(假设它目前是静态集合)。
  • 目标:检索与用户信息需求相关的文档,并帮助用户完成任务。
  • 经典搜索模型

🐇信息检索小结


🐇附:IR新课题







📚数据挖掘

🐇定义

🐇数据挖掘 vs 机器学习

  • AI说:
    • 数据挖掘和机器学习都是处理大数据的方法,它们之间的区别在于目的和方法。
    • 数据挖掘旨在寻找数据中的模式、规律和关系,以从中提取有价值的信息。数据挖掘的方法是使用各种技术和算法,例如聚类、分类、关联规则挖掘等。
    • 机器学习则是一种人工智能技术,在某种程度上可以看做是数据挖掘的一种扩展。机器学习旨在让计算机根据数据自主学习,建立模型,从而预测、分类或识别未来的数据。机器学习的方法包括监督学习、无监督学习和半监督学习等。

  • 数据挖掘是用来理解事物的。

  • 机器学习是用来预测事物的。

  • 人工智能是用来生成行动的。


  • Data contains value and knowledge.
  • Data mining around us.

🔥分类


🔥聚类
🔥降维

相关推荐
navyDagger3 分钟前
GAN生成对抗网络数学原理解释并实现MNIST数据集生产(附代码演示)
人工智能·python
极客智谷4 分钟前
Spring AI应用系列——基于DashScope平台自主Model配置的Chat应用
人工智能·后端
Cherry Xie6 分钟前
阿里开源图片驱动数字人框架EMO2,新增视频输入
人工智能
数据库砖家7 分钟前
YashanDB 知识库|轻松打通多库数据,YashanDB DBLink 使用指南!
数据库
扎Zn了老Fe8 分钟前
三步本地部署大模型deep seek
人工智能
二进制_博客8 分钟前
高德MCP制作旅游攻略
数据库·旅游
数据库砖家9 分钟前
YashanDB 知识库|如何用闪回功能救回误删的数据?全流程实战演示
数据库
lilye6611 分钟前
精益数据分析(26/126):依据商业模式确定关键指标
大数据·人工智能·数据分析
数据库砖家12 分钟前
YashanDB 知识库|手把手教你回收表空间,释放磁盘的正确姿势!
数据库
Panesle12 分钟前
月之暗面开源-音频理解、生成和对话生成模型:Kimi-Audio-7B-Instruct
人工智能·音视频·语音生成