OpenCV(二十五):边缘检测(一)

目录

1.边缘检测原理

2.Sobel算子边缘检测

3.Scharr算子边缘检测

4.两种算子的生成getDerivKernels()


1.边缘检测原理

其原理是基于图像中灰度值的变化来捕捉图像中的边界和轮廓。梯度则表示了图像中像素强度变化的强弱和方向。 所以沿梯度方向找到有最大梯度值的像素,就可以获得图像中的边缘信息。

2.Sobel算子边缘检测

原理:

Sobel算子是一种常用的边缘检测算子,它可以通过计算图像的梯度来捕捉图像中的边缘信息。它分别计算图像在x和y方向上的导数,然后根据导数的值确定边缘的位置和强度。

具体来说,Sobel算子可以通过一个3x3的卷积核在图像上进行卷积操作。有两个Sobel卷积核,一个用于水平方向(x方向)的边缘检测,另一个用于垂直方向(y方向)的边缘检测。这两个卷积核分别如下:

对于输入图像中的每个像素,Sobel算子将使用这些卷积核计算其水平和垂直方向上的梯度。然后,通过对梯度的幅度进行合并,可以计算出每个像素的总梯度大小。总梯度大小表示像素点周围灰度值的变化强度,较大的变化强度通常对应于图像中的边缘。

函数:

cv::Sobel()函数将Sobel算子应用于输入图像进行卷积操作。

函数的原型如下:

CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,

int dx, int dy, int ksize = 3,

double scale = 1, double delta = 0,

int borderType = BORDER_DEFAULT );

下面是参数的详细解释:

  • src:输入图像,可以是单通道灰度图像或多通道图像。

  • dst:输出图像,与输入图像具有相同的尺寸和类型。

  • ddepth:输出图像的数据类型,它可以是负值(如-1)表示与输入图像保持一致,也可以是CV_8U、CV_16U、CV_32F等值,表示输出图像的深度。

  • dx和dy:分别表示在x和y方向上的导数阶数。可选值为0、1和2。

  • ksize:Sobel内核的大小,必须为1、3、5或7。值越大,滤波器的响应越平缓。

  • scale:可选的缩放因子,用于调整输出图像的值域范围。默认为1。

  • delta:可选的指定delta值,用于调整输出图像的亮度。默认为0。

  • borderType:可选的边界扩充方法,用于处理邻域超出图像边界的情况。默认为cv::BORDER_DEFAULT。

示例代码:

void Sobel_f(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    Mat resultX,resultY,resultXY;
    //X方向一阶边缘
    Sobel(gray,resultX,CV_16S,1,0,1);
    convertScaleAbs(resultX,resultX);

    //Y方向一阶边缘
    Sobel(gray,resultY,CV_16S,0,1,3);
    convertScaleAbs(resultY,resultY);

    //整幅图像的一阶边缘
    resultXY=resultX+resultY;

    //显示图像
    imwrite("/sdcard/DCIM/resultX.png",resultX);
    imwrite("/sdcard/DCIM/resultY.png",resultY);
    imwrite("/sdcard/DCIM/resultXY.png",resultXY);


}

(X方向) ( Y方向) ( XY方向)

3.Scharr算子边缘检测

原理:

Scharr算子是一种边缘检测算子,它是Sobel算子的改进版本。Scharr算子采用了更加精确的权重分配,可以提供更好的边缘检测性能。

Scharr算子也是通过卷积操作来计算图像的梯度,类似于Sobel算子。它包含两个卷积核,一个用于水平方向(x方向)的边缘检测,另一个用于垂直方向(y方向)的边缘检测。

Scharr算子的差异在于卷积核中的权重分配相对于Sobel算子更加平衡,以提高对边缘信号的敏感度。这种平衡权重的分配可以产生更加准确的梯度估计。

Scharr算子使用相同的原理来计算像素点周围的梯度大小和方向。通过在x和y方向上对梯度进行计算,并根据梯度的幅度和方向确定边缘的位置和强度。

函数:

cv::Scharr()函数是OpenCV中的一个函数,用于计算图像的Scharr导数。它类似于Sobel算子,但是使用了更准确的权重分配。

函数原型:

CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,

int dx, int dy, double scale = 1, double delta = 0,

int borderType = BORDER_DEFAULT );

下面是参数的详细解释:

  • src:输入图像,可以是单通道灰度图像或多通道图像。

  • dst:输出图像,与输入图像具有相同的尺寸和类型。

  • ddepth:输出图像的数据类型,可以是负值(如-1),表示与输入图像保持一致,也可以是CV_8U、CV_16U、CV_32F等值,表示输出图像的深度。

  • dx和dy:分别表示在x和y方向上的导数阶数。可选值为0、1和2。

  • scale:可选的缩放因子,用于调整输出图像的值域范围。默认为1。

  • delta:可选的指定delta值,用于调整输出图像的亮度。默认为0。

  • borderType:可选的边界扩充方法,用于处理邻域超出图像边界的情况。默认为cv::BORDER_DEFAULT。

示例代码:

void Scharr_f(Mat img) {
        Mat image;
    cvtColor(img,image,COLOR_BGR2GRAY);
      cv::Mat grad_x, grad_y; // 存放Scharr滤波器的梯度
    cv::Mat abs_grad_x, abs_grad_y; // 存放梯度的绝对值

    // 计算X方向的Scharr滤波器
    cv::Scharr(image, grad_x, CV_16S, 1, 0);
    cv::convertScaleAbs(grad_x, abs_grad_x);

    // 计算Y方向的Scharr滤波器
    cv::Scharr(image, grad_y, CV_16S, 0, 1);
    cv::convertScaleAbs(grad_y, abs_grad_y);

    // 合并X和Y方向的梯度
    cv::Mat grad;
    cv::addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);

    // 显示结果
  imwrite("/sdcard/DCIM/grad.png",grad);
}

结果: (grad)

4.两种算子的生成getDerivKernels()

getDerivKernels()函数是OpenCV中用于生成一维卷积核的函数,可用于计算图像的一阶导数。

函数的原型如下:

void cv::getDerivKernels ( OutputArray kx,

OutputArray ky,

int dx,

int dy,

int ksize,

bool normalize =false,

int ktype = CV_32F

)

  • kx:行滤波器系数的输出矩阵,尺寸为ksize*1
  • ky:列滤波器系数的输出矩阵,尺寸为ksize*1。
  • dx:X方向导数的阶次。
  • dy:Y方向导数的阶次
  • ksize:滤波器的大小,可以选择的参数为FILTER SCHARR,1.35或7。
  • normalize: 是否对滤波器系数进行归一化的标志,默认值为false,表示不进行系数归一化。
  • ktype:滤波器系数类型,可以选择CV 32F或CV 64F,默认参数为CV 32F。

示例代码:

以下是一个使用使用getDerivKernels()函数来生成Sobel和Scharr算子卷积核的示例:

//生成边缘检测器
void f(){
    cv::Mat sobel_xl, sobel_yl; // 存放分离的Sobel算子
    cv::Mat scharr_x, scharr_y; // 存放分离的Scharr算子
    cv::Mat sobelXl, scharrX; // 存放最终算子

    // 一阶X方向Sobel算子
    cv::getDerivKernels(sobel_xl, sobel_yl, 1, 0, 3);
    sobel_xl = sobel_xl.reshape(1, 1); // 转换为单行矩阵
    sobelXl = sobel_yl * sobel_xl; // 计算滤波器

    // X方向Scharr算子
    cv::getDerivKernels(scharr_x, scharr_y, 1, 0, cv::FILTER_SCHARR);
    scharr_x = scharr_x.reshape(1, 1); // 转换为单行矩阵
    scharrX = scharr_y*scharr_x; // 计算滤波器
    ostringstream ss;
    // 打印生成的卷积核
    ss<< "Sobel X方向卷积核:" << sobelXl << endl;
     ss << "Scharr X方向卷积核:" << scharrX <<endl;

    LOGD("%s",ss.str().c_str());
}

我们使用getDerivKernels()函数生成了X方向Sobel算子和X方向Scharr算子的卷积核。然后,我们将其转换为单行矩阵,并通过乘法运算计算得到滤波器。

相关推荐
翔云API2 分钟前
PHP静默活体识别API接口应用场景与集成方案
人工智能
爱吃喵的鲤鱼7 分钟前
linux进程的状态之环境变量
linux·运维·服务器·开发语言·c++
浊酒南街8 分钟前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境24 分钟前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步29 分钟前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
7年老菜鸡35 分钟前
策略模式(C++)三分钟读懂
c++·qt·策略模式
Qspace丨轻空间40 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
没有不重的名么41 分钟前
门控循环单元GRU
人工智能·深度学习·gru
Ni-Guvara43 分钟前
函数对象笔记
c++·算法
love_and_hope1 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习