Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

本文是LLM系列文章,针对《Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses》的翻译。

使用多个RDF知识图来丰富ChatGPT响应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 GPT-LODS的过程和用例](#3 GPT-LODS的过程和用例)
  • [4 结束语](#4 结束语)

摘要

最近有一种趋势是使用新型人工智能聊天GPT聊天箱,它在许多知识领域提供详细的回答和清晰的答案。然而,在许多情况下,它返回了听起来合理但不正确或不准确的回答,而它没有提供证据。因此,任何用户都必须进一步搜索以检查答案的准确性或/和查找关于响应的实体的更多信息。同时,RDF知识图谱(KGs)在任何真实领域上都有大量涌现,它们提供了高质量的结构化数据。为了实现ChatGPT和RDF KGs的组合,我们提出了一个名为GPT•LODS的研究原型,它能够用数百个RDF KGs中的更多信息丰富任何ChatGPT响应。特别是,它通过统计信息和LODSynesis KG的超链接(包含来自400个RDF KG和超过4.12亿个实体的集成数据)来识别和注释响应的每个实体。通过这种方式,可以丰富实体的内容,并实时对响应的事实进行事实核查和验证。

1 引言

2 相关工作

3 GPT-LODS的过程和用例

4 结束语

在本文中,我们提出了研究原型GPT•LODS,它能够实时注释和链接ChatGPT响应到数百个RDF KGs,丰富其实体并验证其事实。作为未来的工作,我们计划通过执行关系提取来改进GUI和事实检查服务,以提供RESTneneneba API并支持多语言。

相关推荐
骥龙7 分钟前
2.4、恶意软件猎手:基于深度学习的二进制文件判别
人工智能·深度学习·网络安全
寒秋丶7 分钟前
Milvus:数据库层操作详解(二)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库
hans汉斯25 分钟前
【计算机科学与应用】基于BERT与DeepSeek大模型的智能舆论监控系统设计
大数据·人工智能·深度学习·算法·自然语言处理·bert·去噪
大模型真好玩27 分钟前
LangChain1.0速通指南(二)——LangChain1.0 create_agent api 基础知识
人工智能·langchain·mcp
开放知识图谱29 分钟前
论文浅尝 | 图约束推理:在知识图谱上实现大语言模型的忠实推理(ICML2025)
人工智能·语言模型·自然语言处理·知识图谱
机器之心37 分钟前
英伟达发射了首个太空AI服务器,H100已上天
人工智能·openai
西柚小萌新39 分钟前
【深入浅出PyTorch】--8.1.PyTorch生态--torchvision
人工智能·pytorch·python
m0_650108241 小时前
【论文精读】迈向更好的指标:从T2VScore看文本到视频生成的新评测范式
人工智能·论文精读·评估指标·文本到视频生成·t2vscore·tvge数据集·视频质量评估
算家计算1 小时前
一张白纸,无限画布:SkyReels刚刚重新定义了AI视频创作
人工智能·aigc·资讯
Kandiy180253981871 小时前
PHY6252国产蓝牙低成本透传芯片BLE5.2智能灯控智能家居
人工智能·物联网·智能家居·射频工程