Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

本文是LLM系列文章,针对《Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses》的翻译。

使用多个RDF知识图来丰富ChatGPT响应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 GPT-LODS的过程和用例](#3 GPT-LODS的过程和用例)
  • [4 结束语](#4 结束语)

摘要

最近有一种趋势是使用新型人工智能聊天GPT聊天箱,它在许多知识领域提供详细的回答和清晰的答案。然而,在许多情况下,它返回了听起来合理但不正确或不准确的回答,而它没有提供证据。因此,任何用户都必须进一步搜索以检查答案的准确性或/和查找关于响应的实体的更多信息。同时,RDF知识图谱(KGs)在任何真实领域上都有大量涌现,它们提供了高质量的结构化数据。为了实现ChatGPT和RDF KGs的组合,我们提出了一个名为GPT•LODS的研究原型,它能够用数百个RDF KGs中的更多信息丰富任何ChatGPT响应。特别是,它通过统计信息和LODSynesis KG的超链接(包含来自400个RDF KG和超过4.12亿个实体的集成数据)来识别和注释响应的每个实体。通过这种方式,可以丰富实体的内容,并实时对响应的事实进行事实核查和验证。

1 引言

2 相关工作

3 GPT-LODS的过程和用例

4 结束语

在本文中,我们提出了研究原型GPT•LODS,它能够实时注释和链接ChatGPT响应到数百个RDF KGs,丰富其实体并验证其事实。作为未来的工作,我们计划通过执行关系提取来改进GUI和事实检查服务,以提供RESTneneneba API并支持多语言。

相关推荐
Codebee几秒前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域12 分钟前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus14 分钟前
深度学习篇---Yolov系列
人工智能·深度学习
静心问道43 分钟前
GoT:超越思维链:语言模型中的有效思维图推理
人工智能·计算机视觉·语言模型
aneasystone本尊1 小时前
学习 Claude Code 的工具使用(三)
人工智能
szxinmai主板定制专家1 小时前
【精密测量】基于ARM+FPGA的多路光栅信号采集方案
服务器·arm开发·人工智能·嵌入式硬件·fpga开发
T__TIII1 小时前
Dify 自定义插件
人工智能·github
快起来别睡了1 小时前
LangChain 介绍及使用指南:从“会聊天”到“能干活”的 AI 应用开发工具
人工智能
AI数据皮皮侠2 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
静心问道2 小时前
大语言模型能够理解并可以通过情绪刺激进行增强
人工智能·语言模型·大模型