Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

本文是LLM系列文章,针对《Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses》的翻译。

使用多个RDF知识图来丰富ChatGPT响应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 GPT-LODS的过程和用例](#3 GPT-LODS的过程和用例)
  • [4 结束语](#4 结束语)

摘要

最近有一种趋势是使用新型人工智能聊天GPT聊天箱,它在许多知识领域提供详细的回答和清晰的答案。然而,在许多情况下,它返回了听起来合理但不正确或不准确的回答,而它没有提供证据。因此,任何用户都必须进一步搜索以检查答案的准确性或/和查找关于响应的实体的更多信息。同时,RDF知识图谱(KGs)在任何真实领域上都有大量涌现,它们提供了高质量的结构化数据。为了实现ChatGPT和RDF KGs的组合,我们提出了一个名为GPT•LODS的研究原型,它能够用数百个RDF KGs中的更多信息丰富任何ChatGPT响应。特别是,它通过统计信息和LODSynesis KG的超链接(包含来自400个RDF KG和超过4.12亿个实体的集成数据)来识别和注释响应的每个实体。通过这种方式,可以丰富实体的内容,并实时对响应的事实进行事实核查和验证。

1 引言

2 相关工作

3 GPT-LODS的过程和用例

4 结束语

在本文中,我们提出了研究原型GPT•LODS,它能够实时注释和链接ChatGPT响应到数百个RDF KGs,丰富其实体并验证其事实。作为未来的工作,我们计划通过执行关系提取来改进GUI和事实检查服务,以提供RESTneneneba API并支持多语言。

相关推荐
大山同学几秒前
多机器人图优化:2024ICARA开源
人工智能·语言模型·机器人·去中心化·slam·感知定位
Topstip8 分钟前
Gemini 对话机器人加入开源盲水印技术来检测 AI 生成的内容
人工智能·ai·机器人
小嗷犬23 分钟前
【论文笔记】VCoder: Versatile Vision Encoders for Multimodal Large Language Models
论文阅读·人工智能·语言模型·大模型·多模态
Struart_R28 分钟前
LVSM: A LARGE VIEW SYNTHESIS MODEL WITH MINIMAL 3D INDUCTIVE BIAS 论文解读
人工智能·3d·transformer·三维重建
lucy1530275107930 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
幻风_huanfeng1 小时前
线性代数中的核心数学知识
人工智能·机器学习
volcanical1 小时前
LangGPT结构化提示词编写实践
人工智能
粤海科技君1 小时前
如何使用腾讯云GPU云服务器自建一个简单的类似ChatGPT、Kimi的会话机器人
服务器·chatgpt·机器人·腾讯云
weyson2 小时前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
RestCloud2 小时前
ETLCloud异常问题分析ai功能
人工智能·ai·数据分析·etl·数据集成工具·数据异常