Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

本文是LLM系列文章,针对《Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses》的翻译。

使用多个RDF知识图来丰富ChatGPT响应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 GPT-LODS的过程和用例](#3 GPT-LODS的过程和用例)
  • [4 结束语](#4 结束语)

摘要

最近有一种趋势是使用新型人工智能聊天GPT聊天箱,它在许多知识领域提供详细的回答和清晰的答案。然而,在许多情况下,它返回了听起来合理但不正确或不准确的回答,而它没有提供证据。因此,任何用户都必须进一步搜索以检查答案的准确性或/和查找关于响应的实体的更多信息。同时,RDF知识图谱(KGs)在任何真实领域上都有大量涌现,它们提供了高质量的结构化数据。为了实现ChatGPT和RDF KGs的组合,我们提出了一个名为GPT•LODS的研究原型,它能够用数百个RDF KGs中的更多信息丰富任何ChatGPT响应。特别是,它通过统计信息和LODSynesis KG的超链接(包含来自400个RDF KG和超过4.12亿个实体的集成数据)来识别和注释响应的每个实体。通过这种方式,可以丰富实体的内容,并实时对响应的事实进行事实核查和验证。

1 引言

2 相关工作

3 GPT-LODS的过程和用例

4 结束语

在本文中,我们提出了研究原型GPT•LODS,它能够实时注释和链接ChatGPT响应到数百个RDF KGs,丰富其实体并验证其事实。作为未来的工作,我们计划通过执行关系提取来改进GUI和事实检查服务,以提供RESTneneneba API并支持多语言。

相关推荐
訾博ZiBo2 分钟前
AI日报 - 2025年3月13日
人工智能
音视频牛哥7 分钟前
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
人工智能·opencv·计算机视觉
SecPulse17 分钟前
AI开源竞赛与硬件革命:2025年3月科技热点全景解读——阿里、腾讯领跑开源,英特尔、台积电重塑算力格局
人工智能·科技·opencv·自然语言处理·开源·语音识别
云端源想19 分钟前
浅谈大语言模型(LLM)的微调与部署
人工智能·语言模型·自然语言处理
瑶光守护者1 小时前
并行计算编程模型的发展方向与RISC-V的机遇
人工智能·笔记·学习·架构·risc-v
初心丨哈士奇2 小时前
基于大模型的GitLab CodeReview 技术调研
前端·人工智能·node.js
Luis Li 的猫猫2 小时前
基于MATLAB的冰块变化仿真
开发语言·图像处理·人工智能·算法·matlab
xiatian_win1232 小时前
本地部署 OpenManus 保姆级教程(Windows 版)
人工智能·windows
蹦蹦跳跳真可爱5892 小时前
Python----计算机视觉处理(opencv:像素,RGB颜色,图像的存储,opencv安装,代码展示)
人工智能·python·opencv·计算机视觉
BIT_Legend3 小时前
Torch 模型 model => .onnx => .trt 及利用 TensorTR 在 C++ 下的模型部署教程
c++·人工智能·python·深度学习