Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

本文是LLM系列文章,针对《Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses》的翻译。

使用多个RDF知识图来丰富ChatGPT响应

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 GPT-LODS的过程和用例](#3 GPT-LODS的过程和用例)
  • [4 结束语](#4 结束语)

摘要

最近有一种趋势是使用新型人工智能聊天GPT聊天箱,它在许多知识领域提供详细的回答和清晰的答案。然而,在许多情况下,它返回了听起来合理但不正确或不准确的回答,而它没有提供证据。因此,任何用户都必须进一步搜索以检查答案的准确性或/和查找关于响应的实体的更多信息。同时,RDF知识图谱(KGs)在任何真实领域上都有大量涌现,它们提供了高质量的结构化数据。为了实现ChatGPT和RDF KGs的组合,我们提出了一个名为GPT•LODS的研究原型,它能够用数百个RDF KGs中的更多信息丰富任何ChatGPT响应。特别是,它通过统计信息和LODSynesis KG的超链接(包含来自400个RDF KG和超过4.12亿个实体的集成数据)来识别和注释响应的每个实体。通过这种方式,可以丰富实体的内容,并实时对响应的事实进行事实核查和验证。

1 引言

2 相关工作

3 GPT-LODS的过程和用例

4 结束语

在本文中,我们提出了研究原型GPT•LODS,它能够实时注释和链接ChatGPT响应到数百个RDF KGs,丰富其实体并验证其事实。作为未来的工作,我们计划通过执行关系提取来改进GUI和事实检查服务,以提供RESTneneneba API并支持多语言。

相关推荐
deephub1 小时前
从零开始:用Python和Gemini 3四步搭建你自己的AI Agent
人工智能·python·大语言模型·agent
算家计算1 小时前
DeepSeek开源IMO金牌模型!跑出数学推理新高度,你的算力准备好了吗?
人工智能·资讯·deepseek
Codebee1 小时前
SOLO+OODER全栈框架:图生代码与组件化重构实战指南
前端·人工智能
腾讯云开发者2 小时前
AI 时代,职场不慌!前快狗打车CTO沈剑来支招
人工智能
合方圆~小文2 小时前
球型摄像机作为现代监控系统的核心设备
java·数据库·c++·人工智能
AI_56782 小时前
AI无人机如何让安全隐患无处遁形
人工智能·无人机
机器之心2 小时前
DeepSeek强势回归,开源IMO金牌级数学模型
人工智能·openai
机器之心2 小时前
华为放出「准万亿级MoE推理」大招,两大杀手级优化技术直接开源
人工智能·openai
大力财经2 小时前
零跑Lafa5正式上市 以“五大硬核实力”开启品牌个性化新篇章
人工智能
ECT-OS-JiuHuaShan2 小时前
否定之否定的辩证法,谁会不承认?但又有多少人说的透?
开发语言·人工智能·数学建模·生活·学习方法·量子计算·拓扑学