leetcode70爬楼梯

题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

复制代码
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

复制代码
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

思路:

n=1时,f(n)=1;

n=2时,f(n)=2;

n>2时,f(n)=f(n -1)+f(n -2)


解决:

解法1:递归

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        return climbStairs(n-1)+climbStairs(n-2);
    }

这种解法时间复杂度高,为O(n^2),提交会显示超出时间限制。


解法2:递归,用HashMap存储中间结果

java 复制代码
private Map<Integer,Integer> storeMap = new HashMap();
public int climbStairs(int n) {
    if(n==1) return 1;
    if(n==2) return 2;
    if(null != storeMap.get(n))
        return storeMap.get(n);
    else {
        int result=climbStairs(n-1)+climbStairs(n-2);
        storeMap.put(n,result);
        return result;
        }
}

使用hashmap保存已经求出的f(n)值,下次求解时先在hashmap中找看之前有没有求过。这样就可以避免重复计算。时间复杂度为O(n)。


解法3:迭代循环

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        int result=0;
        int pre=2;
        int prepre=1;
        for(int i=3;i<=n;i++) {
            result=pre+prepre;
            prepre=pre;
            pre=result;
        }
        return result;
    }

由底向上,从f(2)和f(1)累加向上,f(3)=f(2)+f(1),f(4)=f(3)+f(2),求f(3)需要知道f(2)和f(1),求f(4)需要知道f(3)和f(2),则需要两个额外变量保存每轮的子问题的解。时间复杂度为O(n)。


加油加油^_^

相关推荐
sali-tec5 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
小明说Java5 小时前
常见排序算法的实现
数据结构·算法·排序算法
45288655上山打老虎5 小时前
C++完美转发
java·jvm·c++
Seven975 小时前
查找算法
java
行云流水20196 小时前
编程竞赛算法选择:理解时间复杂度提升解题效率
算法
毕设源码-朱学姐6 小时前
【开题答辩全过程】以 公务员考试在线测试系统为例,包含答辩的问题和答案
java
serendipity_hky6 小时前
【SpringCloud | 第2篇】OpenFeign远程调用
java·后端·spring·spring cloud·openfeign
RwTo6 小时前
【源码】-Java线程池ThreadPool
java·开发语言
SadSunset6 小时前
(15)抽象工厂模式(了解)
java·笔记·后端·spring·抽象工厂模式
兮动人6 小时前
EMT4J定制规则版:Java 8→17迁移兼容性检测与规则优化实战
java·开发语言·emt4j