leetcode70爬楼梯

题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

复制代码
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

复制代码
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

思路:

n=1时,f(n)=1;

n=2时,f(n)=2;

n>2时,f(n)=f(n -1)+f(n -2)


解决:

解法1:递归

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        return climbStairs(n-1)+climbStairs(n-2);
    }

这种解法时间复杂度高,为O(n^2),提交会显示超出时间限制。


解法2:递归,用HashMap存储中间结果

java 复制代码
private Map<Integer,Integer> storeMap = new HashMap();
public int climbStairs(int n) {
    if(n==1) return 1;
    if(n==2) return 2;
    if(null != storeMap.get(n))
        return storeMap.get(n);
    else {
        int result=climbStairs(n-1)+climbStairs(n-2);
        storeMap.put(n,result);
        return result;
        }
}

使用hashmap保存已经求出的f(n)值,下次求解时先在hashmap中找看之前有没有求过。这样就可以避免重复计算。时间复杂度为O(n)。


解法3:迭代循环

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        int result=0;
        int pre=2;
        int prepre=1;
        for(int i=3;i<=n;i++) {
            result=pre+prepre;
            prepre=pre;
            pre=result;
        }
        return result;
    }

由底向上,从f(2)和f(1)累加向上,f(3)=f(2)+f(1),f(4)=f(3)+f(2),求f(3)需要知道f(2)和f(1),求f(4)需要知道f(3)和f(2),则需要两个额外变量保存每轮的子问题的解。时间复杂度为O(n)。


加油加油^_^

相关推荐
咖啡Beans29 分钟前
使用OpenFeign实现微服务间通信
java·spring cloud
我不是混子32 分钟前
说说单例模式
java
间彧3 小时前
SimpleDateFormat既然不推荐使用,为什么java 8+中不删除此类
java
间彧3 小时前
DateTimeFormatter相比SimpleDateFormat在性能上有何差异?
java
间彧3 小时前
为什么说SimpleDateFormat是经典的线程不安全类
java
MacroZheng3 小时前
横空出世!MyBatis-Plus 同款 ES ORM 框架,用起来够优雅!
java·后端·elasticsearch
CoovallyAIHub4 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
用户0332126663674 小时前
Java 查找并替换 Excel 中的数据:详细教程
java
间彧4 小时前
ThreadLocal实现原理与应用实践
java