leetcode70爬楼梯

题目:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

复制代码
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

复制代码
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

思路:

n=1时,f(n)=1;

n=2时,f(n)=2;

n>2时,f(n)=f(n -1)+f(n -2)


解决:

解法1:递归

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        return climbStairs(n-1)+climbStairs(n-2);
    }

这种解法时间复杂度高,为O(n^2),提交会显示超出时间限制。


解法2:递归,用HashMap存储中间结果

java 复制代码
private Map<Integer,Integer> storeMap = new HashMap();
public int climbStairs(int n) {
    if(n==1) return 1;
    if(n==2) return 2;
    if(null != storeMap.get(n))
        return storeMap.get(n);
    else {
        int result=climbStairs(n-1)+climbStairs(n-2);
        storeMap.put(n,result);
        return result;
        }
}

使用hashmap保存已经求出的f(n)值,下次求解时先在hashmap中找看之前有没有求过。这样就可以避免重复计算。时间复杂度为O(n)。


解法3:迭代循环

java 复制代码
public int climbStairs(int n) {
        if(n==1) return 1;
        if(n==2) return 2;
        int result=0;
        int pre=2;
        int prepre=1;
        for(int i=3;i<=n;i++) {
            result=pre+prepre;
            prepre=pre;
            pre=result;
        }
        return result;
    }

由底向上,从f(2)和f(1)累加向上,f(3)=f(2)+f(1),f(4)=f(3)+f(2),求f(3)需要知道f(2)和f(1),求f(4)需要知道f(3)和f(2),则需要两个额外变量保存每轮的子问题的解。时间复杂度为O(n)。


加油加油^_^

相关推荐
希忘auto11 分钟前
详解MySQL安装
java·mysql
ChoSeitaku11 分钟前
链表循环及差集相关算法题|判断循环双链表是否对称|两循环单链表合并成循环链表|使双向循环链表有序|单循环链表改双向循环链表|两链表的差集(C)
c语言·算法·链表
DdddJMs__13517 分钟前
C语言 | Leetcode C语言题解之第557题反转字符串中的单词III
c语言·leetcode·题解
Fuxiao___20 分钟前
不使用递归的决策树生成算法
算法
冰淇淋烤布蕾22 分钟前
EasyExcel使用
java·开发语言·excel
我爱工作&工作love我25 分钟前
1435:【例题3】曲线 一本通 代替三分
c++·算法
拾荒的小海螺28 分钟前
JAVA:探索 EasyExcel 的技术指南
java·开发语言
Jakarta EE1 小时前
正确使用primefaces的process和update
java·primefaces·jakarta ee
马剑威(威哥爱编程)1 小时前
哇喔!20种单例模式的实现与变异总结
java·开发语言·单例模式
白-胖-子1 小时前
【蓝桥等考C++真题】蓝桥杯等级考试C++组第13级L13真题原题(含答案)-统计数字
开发语言·c++·算法·蓝桥杯·等考·13级