举例说明PyTorch函数torch.cat与torch.stack的区别

一、torch.cat与torch.stack的区别

torch.cat用于在给定的维度上连接多个张量,它将这些张量沿着指定维度堆叠在一起。

torch.stack用于在新的维度上堆叠多个张量,它会创建一个新的维度,并将这些张量沿着这个新维度堆叠在一起。

二、torch.cat

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

result1 = torch.cat((tensor1, tensor2), dim=0)
result2 = torch.cat((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([4, 2])
tensor([[1, 2],
        [3, 4],
        [5, 6],
        [7, 8]])
torch.Size([2, 4])
tensor([[1, 2, 5, 6],
        [3, 4, 7, 8]])

三、torch.stack

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])

result1 = torch.stack((tensor1, tensor2), dim=0)
result2 = torch.stack((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([2, 3])
tensor([[1, 2, 3],
        [4, 5, 6]])
torch.Size([3, 2])
tensor([[1, 4],
        [2, 5],
        [3, 6]])

Example2:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4], [5, 6]])
tensor2 = torch.tensor([[7, 8], [9, 10], [11, 12]])
tensor3 = torch.tensor([[13, 14], [15, 16], [17, 18]])

result1 = torch.stack((tensor1, tensor2, tensor3), dim=0)
result2 = torch.stack((tensor1, tensor2, tensor3), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 3,  4],
         [ 5,  6]],

        [[ 7,  8],
         [ 9, 10],
         [11, 12]],

        [[13, 14],
         [15, 16],
         [17, 18]]])
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 7,  8],
         [13, 14]],

        [[ 3,  4],
         [ 9, 10],
         [15, 16]],

        [[ 5,  6],
         [11, 12],
         [17, 18]]])
相关推荐
每天都要写算法(努力版)几秒前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
cloudy4911 分钟前
强化学习:历史基金净产值,学习最大化长期收益
python·强化学习
Bruce_Liuxiaowei13 分钟前
使用Python脚本在Mac上彻底清除Chrome浏览历史:开发实战与隐私保护指南
chrome·python·macos
vocal19 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua20 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
ruyingcai66666625 分钟前
用python进行OCR识别
开发语言·python·ocr
arbboter28 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
Niuguangshuo28 分钟前
Python设计模式:MVC模式
python·设计模式·mvc
TOMGRIL32 分钟前
文件的读取操作
python
liuweidong080235 分钟前
【Pandas】pandas DataFrame radd
开发语言·python·pandas