举例说明PyTorch函数torch.cat与torch.stack的区别

一、torch.cat与torch.stack的区别

torch.cat用于在给定的维度上连接多个张量,它将这些张量沿着指定维度堆叠在一起。

torch.stack用于在新的维度上堆叠多个张量,它会创建一个新的维度,并将这些张量沿着这个新维度堆叠在一起。

二、torch.cat

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

result1 = torch.cat((tensor1, tensor2), dim=0)
result2 = torch.cat((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([4, 2])
tensor([[1, 2],
        [3, 4],
        [5, 6],
        [7, 8]])
torch.Size([2, 4])
tensor([[1, 2, 5, 6],
        [3, 4, 7, 8]])

三、torch.stack

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])

result1 = torch.stack((tensor1, tensor2), dim=0)
result2 = torch.stack((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([2, 3])
tensor([[1, 2, 3],
        [4, 5, 6]])
torch.Size([3, 2])
tensor([[1, 4],
        [2, 5],
        [3, 6]])

Example2:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4], [5, 6]])
tensor2 = torch.tensor([[7, 8], [9, 10], [11, 12]])
tensor3 = torch.tensor([[13, 14], [15, 16], [17, 18]])

result1 = torch.stack((tensor1, tensor2, tensor3), dim=0)
result2 = torch.stack((tensor1, tensor2, tensor3), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 3,  4],
         [ 5,  6]],

        [[ 7,  8],
         [ 9, 10],
         [11, 12]],

        [[13, 14],
         [15, 16],
         [17, 18]]])
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 7,  8],
         [13, 14]],

        [[ 3,  4],
         [ 9, 10],
         [15, 16]],

        [[ 5,  6],
         [11, 12],
         [17, 18]]])
相关推荐
没有晚不了安几秒前
1.13作业
开发语言·python
Blankspace空白11 分钟前
【小白学AI系列】NLP 核心知识点(八)多头自注意力机制
人工智能·自然语言处理
刀客12311 分钟前
python小项目编程-中级(1、图像处理)
开发语言·图像处理·python
Sodas(填坑中....)19 分钟前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘
信阳农夫24 分钟前
python 3.6.8支持的Django版本是多少?
python·django·sqlite
forestsea26 分钟前
DeepSeek 提示词:定义、作用、分类与设计原则
人工智能·prompt·deepseek
maxruan35 分钟前
自动驾驶之BEV概述
人工智能·机器学习·自动驾驶·bev
冷琴199635 分钟前
基于Python+Vue开发的反诈视频宣传管理系统源代码
开发语言·vue.js·python
13631676419侯41 分钟前
物联网+人工智能的无限可能
人工智能·物联网
SylviaW0843 分钟前
神经网络八股(三)
人工智能·深度学习·神经网络