举例说明PyTorch函数torch.cat与torch.stack的区别

一、torch.cat与torch.stack的区别

torch.cat用于在给定的维度上连接多个张量,它将这些张量沿着指定维度堆叠在一起。

torch.stack用于在新的维度上堆叠多个张量,它会创建一个新的维度,并将这些张量沿着这个新维度堆叠在一起。

二、torch.cat

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

result1 = torch.cat((tensor1, tensor2), dim=0)
result2 = torch.cat((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([4, 2])
tensor([[1, 2],
        [3, 4],
        [5, 6],
        [7, 8]])
torch.Size([2, 4])
tensor([[1, 2, 5, 6],
        [3, 4, 7, 8]])

三、torch.stack

Example1:

py 复制代码
import torch

tensor1 = torch.tensor([1, 2, 3])
tensor2 = torch.tensor([4, 5, 6])

result1 = torch.stack((tensor1, tensor2), dim=0)
result2 = torch.stack((tensor1, tensor2), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([2, 3])
tensor([[1, 2, 3],
        [4, 5, 6]])
torch.Size([3, 2])
tensor([[1, 4],
        [2, 5],
        [3, 6]])

Example2:

py 复制代码
import torch

tensor1 = torch.tensor([[1, 2], [3, 4], [5, 6]])
tensor2 = torch.tensor([[7, 8], [9, 10], [11, 12]])
tensor3 = torch.tensor([[13, 14], [15, 16], [17, 18]])

result1 = torch.stack((tensor1, tensor2, tensor3), dim=0)
result2 = torch.stack((tensor1, tensor2, tensor3), dim=1)

print(result1.shape)
print(result1)
print(result2.shape)
print(result2)
lua 复制代码
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 3,  4],
         [ 5,  6]],

        [[ 7,  8],
         [ 9, 10],
         [11, 12]],

        [[13, 14],
         [15, 16],
         [17, 18]]])
torch.Size([3, 3, 2])
tensor([[[ 1,  2],
         [ 7,  8],
         [13, 14]],

        [[ 3,  4],
         [ 9, 10],
         [15, 16]],

        [[ 5,  6],
         [11, 12],
         [17, 18]]])
相关推荐
hummhumm6 分钟前
第 12 章 - Go语言 方法
java·开发语言·javascript·后端·python·sql·golang
hummhumm6 分钟前
第 8 章 - Go语言 数组与切片
java·开发语言·javascript·python·sql·golang·database
棱角~~9 分钟前
10款音频剪辑工具的个人实践体验感受!!
人工智能·经验分享·其他·音视频·学习方法
铭瑾熙11 分钟前
深度学习之GAN的生成能力评价
人工智能·深度学习·生成对抗网络
互联网杂货铺29 分钟前
基于Selenium+Python的web自动化测试框架(附框架源码+项目实战)
自动化测试·软件测试·python·selenium·测试工具·单元测试·测试用例
irrationality1 小时前
昇思大模型平台打卡体验活动:项目1基于MindSpore实现BERT对话情绪识别
人工智能·深度学习·bert
myheartgo-on1 小时前
PySpark——Python与大数据
大数据·python·信息可视化
newxtc1 小时前
【魔珐有言-注册/登录安全分析报告-无验证方式导致安全隐患】
人工智能·安全·网易易盾·ai写作·极验
weixin_478689761 小时前
【回溯法】——组合总数
数据结构·python·算法
天天要nx1 小时前
D68【python 接口自动化学习】- python基础之数据库
数据库·python