【449. 序列化和反序列化二叉搜索树】

来源:力扣(LeetCode)

描述:

序列化是将数据结构或对象转换为一系列位的过程,以便它可以存储在文件或内存缓冲区中,或通过网络连接链路传输,以便稍后在同一个或另一个计算机环境中重建。

设计一个算法来序列化和反序列化 二叉搜索树 。 对序列化/反序列化算法的工作方式没有限制。 您只需确保二叉搜索树可以序列化为字符串,并且可以将该字符串反序列化为最初的二叉搜索树。

编码的字符串应尽可能紧凑。

示例 1:

cpp 复制代码
输入:root = [2,1,3]
输出:[2,1,3]

示例 2:

cpp 复制代码
输入:root = []
输出:[]

提示:

  • 树中节点数范围是 [0, 104]
  • 0 <= Node.val <= 104
  • 题目数据 保证 输入的树是一棵二叉搜索树。

方法:后序遍历

思路

给定一棵二叉树的「先序遍历」和「中序遍历」可以恢复这颗二叉树。给定一棵二叉树的「后序遍历」和「中序遍历」也可以恢复这颗二叉树。而对于二叉搜索树,给定「先序遍历」或者「后序遍历」,对其经过排序即可得到「中序遍历」。因此,仅对二叉搜索树做「先序遍历」或者「后序遍历」,即可达到序列化和反序列化的要求。此题解采用「后序遍历」的方法。

序列化时,只需要对二叉搜索树进行后序遍历,再将数组编码成字符串即可。

反序列化时,需要先将字符串解码成后序遍历的数组。在将后序遍历的数组恢复成二叉搜索树时,不需要先排序得到中序遍历的数组再根据中序和后序遍历的数组来恢复二叉树,而可以根据有序性直接由后序遍历的数组恢复二叉搜索树。后序遍历得到的数组中,根结点的值位于数组末尾,左子树的节点均小于根节点的值,右子树的节点均大于根节点的值,可以根据这些性质设计递归函数恢复二叉搜索树。

代码:

cpp 复制代码
class Codec {
public:
    string serialize(TreeNode* root) {
        string res;
        vector<int> arr;
        postOrder(root, arr);
        if (arr.size() == 0) {
            return res;
        }
        for (int i = 0; i < arr.size() - 1; i++) {
            res.append(to_string(arr[i]) + ",");
        }
        res.append(to_string(arr.back()));
        return res;
    }

    vector<string> split(const string &str, char dec) {
        int pos = 0;
        int start = 0;
        vector<string> res;
        while (pos < str.size()) {
            while (pos < str.size() && str[pos] == dec) {
                pos++;
            }
            start = pos;
            while (pos < str.size() && str[pos] != dec) {
                pos++;
            }
            if (start < str.size()) {
                res.emplace_back(str.substr(start, pos - start));
            }
        }
        return res;
    }

    TreeNode* deserialize(string data) {
        if (data.size() == 0) {
            return nullptr;
        }
        vector<string> arr = split(data, ',');
        stack<int> st;
        for (auto & str : arr) {
            st.emplace(stoi(str));
        }
        return construct(INT_MIN, INT_MAX, st);
    }

    void postOrder(TreeNode *root,vector<int> & arr) {
        if (root == nullptr) {
            return;
        }
        postOrder(root->left, arr);
        postOrder(root->right, arr);
        arr.emplace_back(root->val);
    }

    TreeNode * construct(int lower, int upper, stack<int> & st) {
        if (st.size() == 0 || st.top() < lower || st.top() > upper) {
            return nullptr;
        }
        int val = st.top();
        st.pop();
        TreeNode *root = new TreeNode(val);
        root->right = construct(val, upper, st);
        root->left = construct(lower, val, st);
        return root;
    }
};

时间 24ms 击败 85.17%使用 C++ 的用户

内存 27.17MB 击败 45.17%使用 C++ 的用户
复杂度分析

  • 时间复杂度: O(n),其中 n 是树的节点数。serialize 需要 O(n) 时间遍历每个点。deserialize 需要 O(n) 时间恢复每个点。
  • 空间复杂度:O(n),其中 nnn 是树的节点数。serialize 需要 O(n) 空间用数组保存每个点的值,递归的深度最深也为 O(n)。deserialize 需要 O(n) 空间用数组保存每个点的值,递归的深度最深也为 O(n)。
    author:力扣官方题解
相关推荐
fpcc4 小时前
C++编程实践——链式调用的实践
c++
会员果汁5 小时前
leetcode-动态规划-买卖股票
算法·leetcode·动态规划
橘颂TA5 小时前
【剑斩OFFER】算法的暴力美学——二进制求和
算法·leetcode·哈希算法·散列表·结构与算法
bkspiderx6 小时前
C++中的volatile:从原理到实践的全面解析
开发语言·c++·volatile
尋有緣7 小时前
力扣1355-活动参与者
大数据·数据库·leetcode·oracle·数据库开发
君义_noip8 小时前
信息学奥赛一本通 2134:【25CSPS提高组】道路修复 | 洛谷 P14362 [CSP-S 2025] 道路修复
c++·算法·图论·信息学奥赛·csp-s
kaikaile19958 小时前
基于拥挤距离的多目标粒子群优化算法(MO-PSO-CD)详解
数据结构·算法
liulilittle8 小时前
OPENPPP2 Code Analysis One
网络·c++·网络协议·信息与通信·通信
不忘不弃8 小时前
求两组数的平均值
数据结构·算法
leaves falling8 小时前
迭代实现 斐波那契数列
数据结构·算法