来源:力扣(LeetCode)
描述:
序列化是将数据结构或对象转换为一系列位的过程,以便它可以存储在文件或内存缓冲区中,或通过网络连接链路传输,以便稍后在同一个或另一个计算机环境中重建。
设计一个算法来序列化和反序列化 二叉搜索树 。 对序列化/反序列化算法的工作方式没有限制。 您只需确保二叉搜索树可以序列化为字符串,并且可以将该字符串反序列化为最初的二叉搜索树。
编码的字符串应尽可能紧凑。
示例 1:
cpp
输入:root = [2,1,3]
输出:[2,1,3]
示例 2:
cpp
输入:root = []
输出:[]
提示:
- 树中节点数范围是 [0, 10^4^]
- 0 <= Node.val <= 10^4^
- 题目数据 保证 输入的树是一棵二叉搜索树。
方法:后序遍历
思路
给定一棵二叉树的「先序遍历」和「中序遍历」可以恢复这颗二叉树。给定一棵二叉树的「后序遍历」和「中序遍历」也可以恢复这颗二叉树。而对于二叉搜索树,给定「先序遍历」或者「后序遍历」,对其经过排序即可得到「中序遍历」。因此,仅对二叉搜索树做「先序遍历」或者「后序遍历」,即可达到序列化和反序列化的要求。此题解采用「后序遍历」的方法。
序列化时,只需要对二叉搜索树进行后序遍历,再将数组编码成字符串即可。
反序列化时,需要先将字符串解码成后序遍历的数组。在将后序遍历的数组恢复成二叉搜索树时,不需要先排序得到中序遍历的数组再根据中序和后序遍历的数组来恢复二叉树,而可以根据有序性直接由后序遍历的数组恢复二叉搜索树。后序遍历得到的数组中,根结点的值位于数组末尾,左子树的节点均小于根节点的值,右子树的节点均大于根节点的值,可以根据这些性质设计递归函数恢复二叉搜索树。
代码:
cpp
class Codec {
public:
string serialize(TreeNode* root) {
string res;
vector<int> arr;
postOrder(root, arr);
if (arr.size() == 0) {
return res;
}
for (int i = 0; i < arr.size() - 1; i++) {
res.append(to_string(arr[i]) + ",");
}
res.append(to_string(arr.back()));
return res;
}
vector<string> split(const string &str, char dec) {
int pos = 0;
int start = 0;
vector<string> res;
while (pos < str.size()) {
while (pos < str.size() && str[pos] == dec) {
pos++;
}
start = pos;
while (pos < str.size() && str[pos] != dec) {
pos++;
}
if (start < str.size()) {
res.emplace_back(str.substr(start, pos - start));
}
}
return res;
}
TreeNode* deserialize(string data) {
if (data.size() == 0) {
return nullptr;
}
vector<string> arr = split(data, ',');
stack<int> st;
for (auto & str : arr) {
st.emplace(stoi(str));
}
return construct(INT_MIN, INT_MAX, st);
}
void postOrder(TreeNode *root,vector<int> & arr) {
if (root == nullptr) {
return;
}
postOrder(root->left, arr);
postOrder(root->right, arr);
arr.emplace_back(root->val);
}
TreeNode * construct(int lower, int upper, stack<int> & st) {
if (st.size() == 0 || st.top() < lower || st.top() > upper) {
return nullptr;
}
int val = st.top();
st.pop();
TreeNode *root = new TreeNode(val);
root->right = construct(val, upper, st);
root->left = construct(lower, val, st);
return root;
}
};
时间 24ms 击败 85.17%使用 C++ 的用户
内存 27.17MB 击败 45.17%使用 C++ 的用户
复杂度分析
- 时间复杂度: O(n),其中 n 是树的节点数。serialize 需要 O(n) 时间遍历每个点。deserialize 需要 O(n) 时间恢复每个点。
- 空间复杂度:O(n),其中 nnn 是树的节点数。serialize 需要 O(n) 空间用数组保存每个点的值,递归的深度最深也为 O(n)。deserialize 需要 O(n) 空间用数组保存每个点的值,递归的深度最深也为 O(n)。
author:力扣官方题解