【数据结构——并查集】

引入

并查集(Disjoint Set Union,DSU)是一种用于管理元素分组的数据结构。

合并(Union):将两个不相交的集合合并为一个集合。

查找(Find):确定某个元素属于哪个集合,通常通过返回集合的"代表元素"(groupID或父节点)实现。

quickFind 和 quickUnion 是并查集的两种实现方式。

每个元素初始时是一个独立的集合,其groupID是本身下标或父节点指向自己(分别表明各自属于哪个集合)。

如下:

主要就是对两个数组所存的内容进行操作,特别是代表元素部分。

对代表元素进行操作的方向(思考角度)不同,就会使用不同的解决方案(如选择quickFind还是quickUnion,)

quickFind

每个元素直接指向其所属集合的代表元(根节点),合并操作时需要遍历整个数组更新所有相关元素。

时间复杂度:

查找(Find):O(1),直接访问数组即可确定所属集合。

合并(Union):O(n),需要遍历数组更新所有属于同一集合的元素。

特点:查找速度快,但合并效率低(找快合慢)。

quickUnion

使用树结构表示集合(看下图只能体现链,后面的内容会讲到路径压缩:通过增大节点的度来提高效率进而体现出树的特点),每个元素指向其父节点,根节点指向自身(下图中未标)。合并时只需将一个树的根指向另一个树的根就能连接两个集合。

时间复杂度:

查找(Find):O(logn)(平均,取决于树高),需要递归或迭代找到根节点。

合并(Union):O(logn),仅需修改根节点的指向。

特点:合并效率高,但查找速度取决于树高。

往常的树结构都是从根节点开始,依次向下指向子结点。而这里是子节点指向父节点,父节点是自己时就指向自己,这种节点被称为根节点(如1和5)。

quickUnion查找速度取决于树高,可通过路径压缩等进一步提升性能:

路径压缩就是想办法把树变矮,像上面的例子:从1到4这串右子树,如果从根节点开始往下遍历,将每个节点的parent都直接指向根节点1,当根节点查找目标节点时仅需访问1层。

大致思路捋顺之后就开始敲了~

//////////////下集预告//////////////

头文件

功能实现

功能调用

相关推荐
LYFlied1 天前
【每日算法】LeetCode 153. 寻找旋转排序数组中的最小值
数据结构·算法·leetcode·面试·职场和发展
唐装鼠1 天前
rust自动调用Deref(deepseek)
开发语言·算法·rust
ytttr8731 天前
MATLAB基于LDA的人脸识别算法实现(ORL数据库)
数据库·算法·matlab
jianfeng_zhu1 天前
整数数组匹配
数据结构·c++·算法
yueqingll1 天前
032、数据结构之代码时间复杂度和空间复杂度的判断:从入门到实战
数据结构
smj2302_796826521 天前
解决leetcode第3782题交替删除操作后最后剩下的整数
python·算法·leetcode
LYFlied1 天前
【每日算法】LeetCode 136. 只出现一次的数字
前端·算法·leetcode·面试·职场和发展
唯唯qwe-1 天前
Day23:动态规划 | 爬楼梯,不同路径,拆分
算法·leetcode·动态规划
做科研的周师兄1 天前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
来深圳1 天前
leetcode 739. 每日温度
java·算法·leetcode