【数据结构——并查集】

引入

并查集(Disjoint Set Union,DSU)是一种用于管理元素分组的数据结构。

合并(Union):将两个不相交的集合合并为一个集合。

查找(Find):确定某个元素属于哪个集合,通常通过返回集合的"代表元素"(groupID或父节点)实现。

quickFind 和 quickUnion 是并查集的两种实现方式。

每个元素初始时是一个独立的集合,其groupID是本身下标或父节点指向自己(分别表明各自属于哪个集合)。

如下:

主要就是对两个数组所存的内容进行操作,特别是代表元素部分。

对代表元素进行操作的方向(思考角度)不同,就会使用不同的解决方案(如选择quickFind还是quickUnion,)

quickFind

每个元素直接指向其所属集合的代表元(根节点),合并操作时需要遍历整个数组更新所有相关元素。

时间复杂度:

查找(Find):O(1),直接访问数组即可确定所属集合。

合并(Union):O(n),需要遍历数组更新所有属于同一集合的元素。

特点:查找速度快,但合并效率低(找快合慢)。

quickUnion

使用树结构表示集合(看下图只能体现链,后面的内容会讲到路径压缩:通过增大节点的度来提高效率进而体现出树的特点),每个元素指向其父节点,根节点指向自身(下图中未标)。合并时只需将一个树的根指向另一个树的根就能连接两个集合。

时间复杂度:

查找(Find):O(logn)(平均,取决于树高),需要递归或迭代找到根节点。

合并(Union):O(logn),仅需修改根节点的指向。

特点:合并效率高,但查找速度取决于树高。

往常的树结构都是从根节点开始,依次向下指向子结点。而这里是子节点指向父节点,父节点是自己时就指向自己,这种节点被称为根节点(如1和5)。

quickUnion查找速度取决于树高,可通过路径压缩等进一步提升性能:

路径压缩就是想办法把树变矮,像上面的例子:从1到4这串右子树,如果从根节点开始往下遍历,将每个节点的parent都直接指向根节点1,当根节点查找目标节点时仅需访问1层。

大致思路捋顺之后就开始敲了~

//////////////下集预告//////////////

头文件

功能实现

功能调用

相关推荐
Python 老手20 小时前
Python while 循环 极简核心讲解
java·python·算法
@Aurora.21 小时前
优选算法【专题九:哈希表】
算法·哈希算法·散列表
爱看科技21 小时前
微美全息(NASDAQ:WIMI)研究拜占庭容错联邦学习算法,数据安全与隐私保护的双重保障
算法
qq_4171292521 小时前
C++中的桥接模式变体
开发语言·c++·算法
Hello World . .21 小时前
数据结构:队列
c语言·开发语言·数据结构·vim
YuTaoShao1 天前
【LeetCode 每日一题】3010. 将数组分成最小总代价的子数组 I——(解法二)排序
算法·leetcode·排序算法
吴维炜1 天前
「Python算法」计费引擎系统SKILL.md
python·算法·agent·skill.md·vb coding
Σίσυφος19001 天前
PCL Point-to-Point ICP详解
人工智能·算法
you-_ling1 天前
数据结构:4.二叉树
数据结构
玄〤1 天前
Java 大数据量输入输出优化方案详解:从 Scanner 到手写快读(含漫画解析)
java·开发语言·笔记·算法