OpenCV(二十六):边缘检测(二)

目录

1.Laplacian算子边缘检测

原理:

Laplacian边缘检测函数Laplacian()

示例代码:

2.Canny算子边缘检测

原理:

Canny算法函数Canny()

示例代码:


1.Laplacian算子边缘检测

原理:

Laplacian算子的原理基于图像的二阶导数。一阶导数可以帮助我们检测图像中的边缘,而二阶导数则可以检测边缘的交叉点,即图像中的角点。

Laplacian算子定义为二阶空间导数的和,在二维情况下用于图像处理,其离散形式如下:

L(x, y) = d^2(I(x, y)) / dx^2 + d^2(I(x, y)) / dy^2 

其中,I(x, y)表示图像中的像素值,d^2表示偏导数,dx表示在X方向上的导数,dy表示在Y方向上的导数。

Laplacian算子可以通过应用离散卷积来计算。一种常见的离散Laplacian算子模板如下:

复制代码

通过将该模板与图像进行卷积操作,我们可以计算图像中每个像素的Laplacian响应。

具体步骤如下:

  1. 将图像转换为灰度图像(如果不是灰度图像)。
  2. 对图像应用Laplacian算子的离散模板。
  3. 对卷积结果进行阈值处理,以提取边缘信息。
  4. 可选地对阈值处理后的边缘图像进行非最大抑制和边缘连接等后处理操作。

Laplacian算子的输出结果是一个表示边缘的高频分量图像。边缘通常显示为明亮像素与暗亮像素之间的边界。边缘的宽度和强度取决于Laplacian算子的大小和图像中的灰度变化。

Laplacian边缘检测函数Laplacian()

void cv::Laplacian ( InputArray src,

OutputArray dst,

int ddepth,

int ksize = 1,

double scale = 1,

double delta =0,

int borderType = BORDER DEFAULT

)

  • src:输入原图像,可以是灰度图像和彩色图像。
  • dst: 输出图像,与输入图像src具有相同的尺寸和通道数。
  • ddepth: 输出图像的数据类型(深度),根据输入图像的数据类型不同拥有不同的取值范围。
  • ksize:滤波器的大小,必须为正奇数。
  • scale:对导数计算结果进行缩放的缩放因子,默认系数为1,不进行缩放。
  • delta:偏值,在计算结果中加上偏值。
  • borderType:像素外推法选择标志。
示例代码:
void Laplacian_f(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    Mat result,result_g,result_G;
    //未滤波提取边缘
    Laplacian(gray,result,CV_16S,3,1,0);
    convertScaleAbs(result,result);
    //滤波后提取边缘
    GaussianBlur(gray,result_g,Size(3,3),5,0);//高斯滤波
    Laplacian(result_g,result_G,CV_16S,3,1,0);
    convertScaleAbs(result_G,result_G);
    //显示图像
    imwrite("/sdcard/DCIM/result.png",result);
    imwrite("/sdcard/DCIM/result_G.png",result_G);
}

(未滤波提取边缘图像) (滤波后提取边缘图像)

2.Canny算子边缘检测

原理:
Canny算法函数Canny()

void cv::Canny ( InputArray image,

OutputArray edges,

double threshold1,

double threshold2,

int apertureSize = 3,

bool L2gradient = false

)

  • image:输入图像,必须是CV 8U单通道或者三通道图像
  • edges:输出图像,与输入图像具有相同尺寸的单通道图像,且数据类型为CV 8U。
  • threshold1:第一个滞后阙值
  • threshold2:第二个滞后阀值
  • apertureSize: Sobel算子的直径
  • L2gradient:计算图像梯度幅值的标志
示例代码:
void Canny_f(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    Mat resultHigh,resultLow,resultG;
    //大阈值检测图像边缘
    Canny(image,resultHigh,100,200,3);
    //小阈值检测图像边缘
    Canny(image,resultLow,20,40,3);
    //高斯模糊后检测图像边缘
    GaussianBlur(gray,resultG,Size(3,3),5);
    Canny(resultG,resultG,100,200,3);
    //显示图像
    imwrite("/sdcard/DCIM/resultHigh.png",resultHigh);
    imwrite("/sdcard/DCIM/resultLow.png",resultLow);
    imwrite("/sdcard/DCIM/resultG.png",resultG);
}

(大阈值检测图像边缘) (小阈值检测图像边缘) (高斯模糊后检测图像边缘)

相关推荐
林开落L26 分钟前
前缀和算法习题篇(上)
c++·算法·leetcode
千天夜29 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
大数据面试宝典30 分钟前
用AI来写SQL:让ChatGPT成为你的数据库助手
数据库·人工智能·chatgpt
封步宇AIGC35 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742136 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
Prejudices39 分钟前
C++如何调用Python脚本
开发语言·c++·python
单音GG42 分钟前
推荐一个基于协程的C++(lua)游戏服务器
服务器·c++·游戏·lua
HappyAcmen1 小时前
IDEA部署AI代写插件
java·人工智能·intellij-idea
qing_0406031 小时前
C++——多态
开发语言·c++·多态
孙同学_1 小时前
【C++】—掌握STL vector 类:“Vector简介:动态数组的高效应用”
开发语言·c++