Item-Based Recommendations with Hadoop

Mahout在MapReduce上实现了Item-Based Collaborative Filtering,这里我尝试运行一下。

  1. 安装Hadoop

  2. 从下载Mahout并解压

  3. 准备数据

    下载1 Million MovieLens Dataset,解压得到ratings.dat,用

    sed 's/:😦[0-9]{1,}):😦[0-9]{1})::[0-9]{1,}$/,\1,\2/' ratings.dat

    处理成需要的格式。

  4. 运行

    mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /path/to/input/file -o /path/to/desired/output -n 25

    参数:

    MAHOUT-JOB: /home/laxe/apple/mahout/mahout-examples-0.11.0-job.jar
    Job-Specific Options:
    --input (-i) input Path to job input directory.
    --output (-o) output The directory pathname for output.
    --numRecommendations (-n) numRecommendations Number of recommendations per user.
    --usersFile usersFile File of users to recommend for.
    --itemsFile itemsFile File of items to recommend for.
    --filterFile (-f) filterFile File containing comma-separated userID,itemID pairs. Used to exclude the item from the recommendations for that user(optional).
    --userItemFile (-uif) userItemFile File containing comma-separated userID,itemID pairs(optional). Used to include only these items into recommendations. Cannot be used together with usersFile or itemsFile.
    --booleanData (-b) booleanData Treat input as without prefvalues.
    --maxPrefsPerUser (-mxp) maxPrefsPerUser Maximum number of preferences considered per user in final recommendation phase.
    --minPrefsPerUser (-mp) minPrefsPerUser Ignore users with less preferences than this in the similarity computation (default: 1).
    --maxSimilaritiesPerItem (-m) maxSimilaritiesPerItem Maximum number of similarities considered per item.
    --maxPrefsInItemSimilarity (-mpiis) maxPrefsInItemSimilarity Max number of preferences to consider per user or item in the item similarity computation phase, users or items with more preferences will be sampled down(default: 500).
    --similarityClassname (-s) similarityClassname Name of distributed similarity measures class to instantiate,
    alternatively use one of the predefined similarities([SIMILARITY_COOCCURRENCE, SIMILARITY_LOGLIKELIHOOD, SIMILARITY_TANIMOTO_COEFFICIENT, SIMILARITY_CITY_BLOCK, SIMILARITY_COSINE, SIMILARITY_PEARSON_CORRELATION, SIMILARITY_EUCLIDEAN_DISTANCE])
    --threshold (-tr) threshold Discard item pairs with a similarity value below this.
    --outputPathForSimilarityMatrix (-opfsm) outputPathForSimilarityMatrix Write the items imilarity matrix to this path(optional).
    --randomSeed randomSeed Use this seed for sampling.
    --sequencefileOutput Write the output into a Sequence File instead of a text file.
    --help (-h) Print out help.
    --tempDir tempDir Intermediate output directory.
    --startPhase startPhase First phase to run.
    --endPhase endPhase Last phase to run specify HDFS directories while running on hadoop; else specify local file system directories.

参考
Introduction to Item-Based Recommendations with Hadoop
mahout分布式:Item-based推荐

相关推荐
明达智控技术2 小时前
MR30分布式I/O模块服务换热站项目,守护万家温暖
分布式·物联网·自动化
武子康2 小时前
Java-174 FastFDS 从单机到分布式文件存储:实战与架构取舍
java·大数据·分布式·性能优化·系统架构·dfs·fastdfs
失散132 小时前
分布式专题——56 微服务日志采集与分析系统实战
java·分布式·微服务·架构
失散132 小时前
分布式专题——57 如何保证MySQL数据库到ES的数据一致性
java·数据库·分布式·mysql·elasticsearch·架构
aitoolhub2 小时前
重塑机器人未来:空间智能驱动产业智能化升级
大数据·人工智能·深度学习·机器学习·机器人·aigc
武子康3 小时前
大数据-154 Apache Druid 架构与组件职责全解析 版本架构:Coordinator/Overlord/Historical 实战
大数据·后端·apache
方圆想当图灵3 小时前
Nacos 源码深度畅游:注册中心核心流程详解
分布式·后端·github
TDengine (老段)4 小时前
TDengine 字符串函数 POSITION 用户手册
android·java·大数据·数据库·物联网·时序数据库·tdengine
YangYang9YangYan4 小时前
中专生学历提升与职业发展指南
大数据·人工智能·学习·数据分析
小坏讲微服务4 小时前
Spring Cloud Alibaba 2025.0.0 与 Nacos 3.1.0 集群整合
分布式·nacos·架构·springcloud·nacos集群·springalibaba