Item-Based Recommendations with Hadoop

Mahout在MapReduce上实现了Item-Based Collaborative Filtering,这里我尝试运行一下。

  1. 安装Hadoop

  2. 从下载Mahout并解压

  3. 准备数据

    下载1 Million MovieLens Dataset,解压得到ratings.dat,用

    sed 's/:😦[0-9]{1,}):😦[0-9]{1})::[0-9]{1,}$/,\1,\2/' ratings.dat

    处理成需要的格式。

  4. 运行

    mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /path/to/input/file -o /path/to/desired/output -n 25

    参数:

    MAHOUT-JOB: /home/laxe/apple/mahout/mahout-examples-0.11.0-job.jar
    Job-Specific Options:
    --input (-i) input Path to job input directory.
    --output (-o) output The directory pathname for output.
    --numRecommendations (-n) numRecommendations Number of recommendations per user.
    --usersFile usersFile File of users to recommend for.
    --itemsFile itemsFile File of items to recommend for.
    --filterFile (-f) filterFile File containing comma-separated userID,itemID pairs. Used to exclude the item from the recommendations for that user(optional).
    --userItemFile (-uif) userItemFile File containing comma-separated userID,itemID pairs(optional). Used to include only these items into recommendations. Cannot be used together with usersFile or itemsFile.
    --booleanData (-b) booleanData Treat input as without prefvalues.
    --maxPrefsPerUser (-mxp) maxPrefsPerUser Maximum number of preferences considered per user in final recommendation phase.
    --minPrefsPerUser (-mp) minPrefsPerUser Ignore users with less preferences than this in the similarity computation (default: 1).
    --maxSimilaritiesPerItem (-m) maxSimilaritiesPerItem Maximum number of similarities considered per item.
    --maxPrefsInItemSimilarity (-mpiis) maxPrefsInItemSimilarity Max number of preferences to consider per user or item in the item similarity computation phase, users or items with more preferences will be sampled down(default: 500).
    --similarityClassname (-s) similarityClassname Name of distributed similarity measures class to instantiate,
    alternatively use one of the predefined similarities([SIMILARITY_COOCCURRENCE, SIMILARITY_LOGLIKELIHOOD, SIMILARITY_TANIMOTO_COEFFICIENT, SIMILARITY_CITY_BLOCK, SIMILARITY_COSINE, SIMILARITY_PEARSON_CORRELATION, SIMILARITY_EUCLIDEAN_DISTANCE])
    --threshold (-tr) threshold Discard item pairs with a similarity value below this.
    --outputPathForSimilarityMatrix (-opfsm) outputPathForSimilarityMatrix Write the items imilarity matrix to this path(optional).
    --randomSeed randomSeed Use this seed for sampling.
    --sequencefileOutput Write the output into a Sequence File instead of a text file.
    --help (-h) Print out help.
    --tempDir tempDir Intermediate output directory.
    --startPhase startPhase First phase to run.
    --endPhase endPhase Last phase to run specify HDFS directories while running on hadoop; else specify local file system directories.

参考
Introduction to Item-Based Recommendations with Hadoop
mahout分布式:Item-based推荐

相关推荐
GIS数据转换器2 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
hg01183 小时前
今年前10个月天津进出口总值6940.2亿元
大数据
每天进步一点_JL4 小时前
事务与消息中间件:分布式系统中的可见性边界问题
分布式·后端
byte轻骑兵4 小时前
时序数据库选型指南:从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
Leo.yuan4 小时前
制造业都在说BOM,为什么BOM这么重要?
大数据·bom·企业数字化·数字赋能
能鈺CMS4 小时前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
静若繁花_jingjing6 小时前
ZooKeeper & Nacos
分布式·zookeeper·云原生
wanhengidc6 小时前
云手机中分布式存储的功能
运维·服务器·分布式·游戏·智能手机·云计算
u***j3247 小时前
HarmonyOS分布式能力核心技术深度解析
分布式·华为·harmonyos
7***n757 小时前
HarmonyOS分布式数据管理
分布式·华为·harmonyos