Item-Based Recommendations with Hadoop

Mahout在MapReduce上实现了Item-Based Collaborative Filtering,这里我尝试运行一下。

  1. 安装Hadoop

  2. 从下载Mahout并解压

  3. 准备数据

    下载1 Million MovieLens Dataset,解压得到ratings.dat,用

    sed 's/:😦[0-9]{1,}):😦[0-9]{1})::[0-9]{1,}$/,\1,\2/' ratings.dat

    处理成需要的格式。

  4. 运行

    mahout recommenditembased -s SIMILARITY_LOGLIKELIHOOD -i /path/to/input/file -o /path/to/desired/output -n 25

    参数:

    MAHOUT-JOB: /home/laxe/apple/mahout/mahout-examples-0.11.0-job.jar
    Job-Specific Options:
    --input (-i) input Path to job input directory.
    --output (-o) output The directory pathname for output.
    --numRecommendations (-n) numRecommendations Number of recommendations per user.
    --usersFile usersFile File of users to recommend for.
    --itemsFile itemsFile File of items to recommend for.
    --filterFile (-f) filterFile File containing comma-separated userID,itemID pairs. Used to exclude the item from the recommendations for that user(optional).
    --userItemFile (-uif) userItemFile File containing comma-separated userID,itemID pairs(optional). Used to include only these items into recommendations. Cannot be used together with usersFile or itemsFile.
    --booleanData (-b) booleanData Treat input as without prefvalues.
    --maxPrefsPerUser (-mxp) maxPrefsPerUser Maximum number of preferences considered per user in final recommendation phase.
    --minPrefsPerUser (-mp) minPrefsPerUser Ignore users with less preferences than this in the similarity computation (default: 1).
    --maxSimilaritiesPerItem (-m) maxSimilaritiesPerItem Maximum number of similarities considered per item.
    --maxPrefsInItemSimilarity (-mpiis) maxPrefsInItemSimilarity Max number of preferences to consider per user or item in the item similarity computation phase, users or items with more preferences will be sampled down(default: 500).
    --similarityClassname (-s) similarityClassname Name of distributed similarity measures class to instantiate,
    alternatively use one of the predefined similarities([SIMILARITY_COOCCURRENCE, SIMILARITY_LOGLIKELIHOOD, SIMILARITY_TANIMOTO_COEFFICIENT, SIMILARITY_CITY_BLOCK, SIMILARITY_COSINE, SIMILARITY_PEARSON_CORRELATION, SIMILARITY_EUCLIDEAN_DISTANCE])
    --threshold (-tr) threshold Discard item pairs with a similarity value below this.
    --outputPathForSimilarityMatrix (-opfsm) outputPathForSimilarityMatrix Write the items imilarity matrix to this path(optional).
    --randomSeed randomSeed Use this seed for sampling.
    --sequencefileOutput Write the output into a Sequence File instead of a text file.
    --help (-h) Print out help.
    --tempDir tempDir Intermediate output directory.
    --startPhase startPhase First phase to run.
    --endPhase endPhase Last phase to run specify HDFS directories while running on hadoop; else specify local file system directories.

参考
Introduction to Item-Based Recommendations with Hadoop
mahout分布式:Item-based推荐

相关推荐
谅望者17 分钟前
数据分析笔记02:数值方法
大数据·数据库·笔记·数据挖掘·数据分析
q***656943 分钟前
深入解析HDFS:定义、架构、原理、应用场景及常用命令
hadoop·hdfs·架构
DolphinScheduler社区1 小时前
Apache DolphinScheduler 新增 gRPC 任务插件 | 开源之夏成果总结
大数据·开源·apache·海豚调度
YangYang9YangYan1 小时前
高职单招与统招比较及职业发展指南
大数据·人工智能·数据分析
L.EscaRC1 小时前
ArkTS分布式设计模式浅析
分布式·设计模式·arkts
vivo互联网技术1 小时前
Flink 的 RocksDB 状态后端在 vivo 的实践
大数据
BugShare2 小时前
嘿嘿,一个简单ElasticSearch小实现
java·大数据·spring boot·elasticsearch
muxue1783 小时前
Hadoop集群搭建(下):centos 7为例(已将将安装所需压缩包统一放在了/opt/software目录下)
大数据·hadoop·centos
武子康3 小时前
大数据-151 Apache Druid 集群落地 [上篇] MySQL 元数据 + HDFS 深存与低配调优
大数据·后端·nosql