《动手学深度学习 Pytorch版》 4.7 前向传播、反向传播和计算图

4.7.1 前向传播

整节理论,详见书本。

4.7.2 前向传播计算图

整节理论,详见书本。

4.7.3 反向传播

整节理论,详见书本。

4.7.4 训练神经网络

整节理论,详见书本。

练习

(1)假设一些标量函数 X X X 的输入 X X X 是 n × m n\times m n×m 矩阵。 f f f 相对于 X X X 的梯度的维数是多少?

还是 n × m n\times m n×m,多少个变量就是多少个导数嘛。


(2)向本节中描述的模型的隐藏层添加偏置项(不需要再正则化项中包含偏置项)。

复制代码
    a.绘制出相应的计算图。

    b.推导前向传播和反向传播方程。

b. 仍假设输入样本是 x ∈ R d \boldsymbol{x}\in\mathbb{R}^d x∈Rd,则前向传播为:

z = W ( 1 ) x + b h = ϕ ( z ) o = W ( 2 ) h + b L = l ( o , y ) s = λ 2 ( ∣ ∣ W ( 1 ) ∣ ∣ F 2 + ∣ ∣ W ( 2 ) ∣ ∣ F 2 ) J = L + s \begin{align} \boldsymbol{z}&=\boldsymbol{W}^{(1)}\boldsymbol{x}+b\\ \boldsymbol{h}&=\phi(\boldsymbol{z})\\ \boldsymbol{o}&=\boldsymbol{W}^{(2)}\boldsymbol{h}+b\\ L&=l(\boldsymbol{o},y)\\ s&=\frac{\lambda}{2}(||\boldsymbol{W}^{(1)}||^2_F+||\boldsymbol{W}^{(2)}||^2_F)\\ J&=L+s \end{align} zhoLsJ=W(1)x+b=ϕ(z)=W(2)h+b=l(o,y)=2λ(∣∣W(1)∣∣F2+∣∣W(2)∣∣F2)=L+s

反向传播为:

∂ J ∂ L = 1 , ∂ J ∂ s = 1 ∂ J ∂ o = ∂ J ∂ L ∂ L ∂ o = ∂ L ∂ o ∈ R q ∂ s ∂ W ( 1 ) = λ W ( 1 ) , ∂ s ∂ W ( 2 ) = λ W ( 2 ) ∂ J ∂ W ( 2 ) = ∂ J ∂ o ∂ o ∂ W ( 2 ) + ∂ J ∂ s ∂ s ∂ W ( 2 ) = ∂ J ∂ o h T + λ W ( 2 ) ∂ J ∂ h = ∂ J ∂ o ∂ o ∂ h = W ( 2 ) T ∂ J ∂ o ∂ J ∂ z = ∂ J ∂ h ∂ h ∂ z = ∂ J ∂ h ⊙ ϕ ′ ( z ) ∂ J ∂ W ( 1 ) = ∂ J ∂ z ∂ z ∂ W ( 1 ) + ∂ J ∂ s ∂ s ∂ W ( 1 ) = ∂ J ∂ z x T + λ W ( 1 ) \begin{align} \frac{\partial J}{\partial L}&=1,\frac{\partial J}{\partial s}=1\\ \frac{\partial J}{\partial\boldsymbol{o}}&=\frac{\partial J}{\partial L}\frac{\partial L}{\partial\boldsymbol{o}}=\frac{\partial L}{\partial\boldsymbol{o}}\in\mathbb{R}^q\\ \frac{\partial s}{\partial\boldsymbol{W}^{(1)}}&=\lambda\boldsymbol{W}^{(1)},\frac{\partial s}{\partial\boldsymbol{W}^{(2)}}=\lambda\boldsymbol{W}^{(2)}\\ \frac{\partial J}{\partial\boldsymbol{W}^{(2)}}&=\frac{\partial J}{\partial\boldsymbol{o}}\frac{\partial\boldsymbol{o}}{\partial\boldsymbol{W}^{(2)}}+\frac{\partial J}{\partial s}\frac{\partial s}{\partial\boldsymbol{W}^{(2)}}=\frac{\partial J}{\partial\boldsymbol{o}}\boldsymbol{h}^T+\lambda\boldsymbol{W}^{(2)}\\ \frac{\partial J}{\partial\boldsymbol{h}}&=\frac{\partial J}{\partial\boldsymbol{o}}\frac{\partial\boldsymbol{o}}{\partial\boldsymbol{h}}=\boldsymbol{W}^{(2)T}\frac{\partial J}{\partial\boldsymbol{o}}\\ \frac{\partial J}{\partial\boldsymbol{z}}&=\frac{\partial J}{\partial\boldsymbol{h}}\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{z}}=\frac{\partial J}{\partial\boldsymbol{h}}\odot\phi'(\boldsymbol{z})\\ \frac{\partial J}{\partial\boldsymbol{W}^{(1)}}&=\frac{\partial J}{\partial\boldsymbol{z}}\frac{\partial\boldsymbol{z}}{\partial\boldsymbol{W}^{(1)}}+\frac{\partial J}{\partial s}\frac{\partial s}{\partial\boldsymbol{W}^{(1)}}=\frac{\partial J}{\partial\boldsymbol{z}}\boldsymbol{x}^T+\lambda\boldsymbol{W}^{(1)} \end{align} ∂L∂J∂o∂J∂W(1)∂s∂W(2)∂J∂h∂J∂z∂J∂W(1)∂J=1,∂s∂J=1=∂L∂J∂o∂L=∂o∂L∈Rq=λW(1),∂W(2)∂s=λW(2)=∂o∂J∂W(2)∂o+∂s∂J∂W(2)∂s=∂o∂JhT+λW(2)=∂o∂J∂h∂o=W(2)T∂o∂J=∂h∂J∂z∂h=∂h∂J⊙ϕ′(z)=∂z∂J∂W(1)∂z+∂s∂J∂W(1)∂s=∂z∂JxT+λW(1)

a. 计算图为:


(3)计算本节所描述的模型用于训练和预测的内存空间。

不会,略。


(4)假设想计算二阶导数。计算图会发生什么变化?预计计算需要多长时间?

二阶计算图应该是在保留一阶计算图的基础上继续拓展出来的,需要的时间大抵是二倍吧。


(5)假设计算图对于当前的GPU来说太大了。

复制代码
    a. 请尝试把它划分到多个GPU上。
    b. 这与小批量训练相比,有哪些优点和缺点。

a. 应使用 torch.nn.DataParallel 进行并行运算。

b.

batch_size够大则会由于并行计算而加快速度

batch_size不够大时反而会因为多卡之间的通信以及数据拆分与合并的额外开销导致效率反而更低。

相关推荐
光锥智能9 分钟前
快手AI的围城与重构
人工智能·重构
老蒋新思维16 分钟前
创客匠人峰会深度复盘:AI 智能体驱动,知识变现的业务重构与实战路径
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
sali-tec7 小时前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
这张生成的图像能检测吗7 小时前
(论文速读)ParaDiffusion:基于信息扩散模型的段落到图像生成
人工智能·机器学习·计算机视觉·文生图·图像生成·视觉语言模型
新程记7 小时前
2025年,上海CAIE认证报考指南:把握AI机遇的实用起点
人工智能·百度
unicrom_深圳市由你创科技8 小时前
汽修AI智能体V1.0——从模型微调到应用部署
人工智能
路边草随风8 小时前
milvus向量数据库使用尝试
人工智能·python·milvus
irizhao8 小时前
基于深度学习的智能停车场系统设计与实现
人工智能·深度学习
Mr.Lee jack9 小时前
【torch.compile】LazyTensor延迟执行机制
pytorch
九河云9 小时前
华为云 ECS 弹性伸缩技术:应对业务峰值的算力动态调度策略
大数据·服务器·人工智能·物联网·华为云