《动手学深度学习 Pytorch版》 4.7 前向传播、反向传播和计算图

4.7.1 前向传播

整节理论,详见书本。

4.7.2 前向传播计算图

整节理论,详见书本。

4.7.3 反向传播

整节理论,详见书本。

4.7.4 训练神经网络

整节理论,详见书本。

练习

(1)假设一些标量函数 X X X 的输入 X X X 是 n × m n\times m n×m 矩阵。 f f f 相对于 X X X 的梯度的维数是多少?

还是 n × m n\times m n×m,多少个变量就是多少个导数嘛。


(2)向本节中描述的模型的隐藏层添加偏置项(不需要再正则化项中包含偏置项)。

    a.绘制出相应的计算图。

    b.推导前向传播和反向传播方程。

b. 仍假设输入样本是 x ∈ R d \boldsymbol{x}\in\mathbb{R}^d x∈Rd,则前向传播为:

z = W ( 1 ) x + b h = ϕ ( z ) o = W ( 2 ) h + b L = l ( o , y ) s = λ 2 ( ∣ ∣ W ( 1 ) ∣ ∣ F 2 + ∣ ∣ W ( 2 ) ∣ ∣ F 2 ) J = L + s \begin{align} \boldsymbol{z}&=\boldsymbol{W}^{(1)}\boldsymbol{x}+b\\ \boldsymbol{h}&=\phi(\boldsymbol{z})\\ \boldsymbol{o}&=\boldsymbol{W}^{(2)}\boldsymbol{h}+b\\ L&=l(\boldsymbol{o},y)\\ s&=\frac{\lambda}{2}(||\boldsymbol{W}^{(1)}||^2_F+||\boldsymbol{W}^{(2)}||^2_F)\\ J&=L+s \end{align} zhoLsJ=W(1)x+b=ϕ(z)=W(2)h+b=l(o,y)=2λ(∣∣W(1)∣∣F2+∣∣W(2)∣∣F2)=L+s

反向传播为:

∂ J ∂ L = 1 , ∂ J ∂ s = 1 ∂ J ∂ o = ∂ J ∂ L ∂ L ∂ o = ∂ L ∂ o ∈ R q ∂ s ∂ W ( 1 ) = λ W ( 1 ) , ∂ s ∂ W ( 2 ) = λ W ( 2 ) ∂ J ∂ W ( 2 ) = ∂ J ∂ o ∂ o ∂ W ( 2 ) + ∂ J ∂ s ∂ s ∂ W ( 2 ) = ∂ J ∂ o h T + λ W ( 2 ) ∂ J ∂ h = ∂ J ∂ o ∂ o ∂ h = W ( 2 ) T ∂ J ∂ o ∂ J ∂ z = ∂ J ∂ h ∂ h ∂ z = ∂ J ∂ h ⊙ ϕ ′ ( z ) ∂ J ∂ W ( 1 ) = ∂ J ∂ z ∂ z ∂ W ( 1 ) + ∂ J ∂ s ∂ s ∂ W ( 1 ) = ∂ J ∂ z x T + λ W ( 1 ) \begin{align} \frac{\partial J}{\partial L}&=1,\frac{\partial J}{\partial s}=1\\ \frac{\partial J}{\partial\boldsymbol{o}}&=\frac{\partial J}{\partial L}\frac{\partial L}{\partial\boldsymbol{o}}=\frac{\partial L}{\partial\boldsymbol{o}}\in\mathbb{R}^q\\ \frac{\partial s}{\partial\boldsymbol{W}^{(1)}}&=\lambda\boldsymbol{W}^{(1)},\frac{\partial s}{\partial\boldsymbol{W}^{(2)}}=\lambda\boldsymbol{W}^{(2)}\\ \frac{\partial J}{\partial\boldsymbol{W}^{(2)}}&=\frac{\partial J}{\partial\boldsymbol{o}}\frac{\partial\boldsymbol{o}}{\partial\boldsymbol{W}^{(2)}}+\frac{\partial J}{\partial s}\frac{\partial s}{\partial\boldsymbol{W}^{(2)}}=\frac{\partial J}{\partial\boldsymbol{o}}\boldsymbol{h}^T+\lambda\boldsymbol{W}^{(2)}\\ \frac{\partial J}{\partial\boldsymbol{h}}&=\frac{\partial J}{\partial\boldsymbol{o}}\frac{\partial\boldsymbol{o}}{\partial\boldsymbol{h}}=\boldsymbol{W}^{(2)T}\frac{\partial J}{\partial\boldsymbol{o}}\\ \frac{\partial J}{\partial\boldsymbol{z}}&=\frac{\partial J}{\partial\boldsymbol{h}}\frac{\partial\boldsymbol{h}}{\partial\boldsymbol{z}}=\frac{\partial J}{\partial\boldsymbol{h}}\odot\phi'(\boldsymbol{z})\\ \frac{\partial J}{\partial\boldsymbol{W}^{(1)}}&=\frac{\partial J}{\partial\boldsymbol{z}}\frac{\partial\boldsymbol{z}}{\partial\boldsymbol{W}^{(1)}}+\frac{\partial J}{\partial s}\frac{\partial s}{\partial\boldsymbol{W}^{(1)}}=\frac{\partial J}{\partial\boldsymbol{z}}\boldsymbol{x}^T+\lambda\boldsymbol{W}^{(1)} \end{align} ∂L∂J∂o∂J∂W(1)∂s∂W(2)∂J∂h∂J∂z∂J∂W(1)∂J=1,∂s∂J=1=∂L∂J∂o∂L=∂o∂L∈Rq=λW(1),∂W(2)∂s=λW(2)=∂o∂J∂W(2)∂o+∂s∂J∂W(2)∂s=∂o∂JhT+λW(2)=∂o∂J∂h∂o=W(2)T∂o∂J=∂h∂J∂z∂h=∂h∂J⊙ϕ′(z)=∂z∂J∂W(1)∂z+∂s∂J∂W(1)∂s=∂z∂JxT+λW(1)

a. 计算图为:


(3)计算本节所描述的模型用于训练和预测的内存空间。

不会,略。


(4)假设想计算二阶导数。计算图会发生什么变化?预计计算需要多长时间?

二阶计算图应该是在保留一阶计算图的基础上继续拓展出来的,需要的时间大抵是二倍吧。


(5)假设计算图对于当前的GPU来说太大了。

    a. 请尝试把它划分到多个GPU上。
    b. 这与小批量训练相比,有哪些优点和缺点。

a. 应使用 torch.nn.DataParallel 进行并行运算。

b.

batch_size够大则会由于并行计算而加快速度

batch_size不够大时反而会因为多卡之间的通信以及数据拆分与合并的额外开销导致效率反而更低。

相关推荐
AI慧聚堂几秒前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者1 分钟前
【pytorch】循环神经网络
人工智能·pytorch
FL162386312911 分钟前
钢材缺陷识别分割数据集labelme格式693张4类别
深度学习
cdut_suye14 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报34 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神37 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技1 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落2 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理