LeetCode //C - 124. Binary Tree Maximum Path Sum

124. Binary Tree Maximum Path Sum

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

  • The number of nodes in the tree is in the range [ 1 , 3 ∗ 1 0 4 1, 3 * 10^4 1,3∗104]
  • -1000 <= Node.val <= 1000

From: LeetCode

Link: 124. Binary Tree Maximum Path Sum


Solution:

Ideas:

Overview:

The problem is to find the maximum path sum in a binary tree. A "path" here means any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Approach:

To solve this problem, we perform a post-order traversal of the tree. For each node, we calculate two things:

  1. The maximum path sum considering the current node as an endpoint.
  2. The maximum path sum that could be formed using the current node, which might include paths from its left and/or right child.

The reason we need both values is that while the first one (endpoint value) helps us build the path sum for the parent node, the second value (including the current node) helps us track the global maximum path sum across the tree.

Code Explanation:

  1. helper function: This is a recursive function that traverses the binary tree in a post-order manner. It calculates the maximum path sum for each node and updates the global maximum path sum.

  2. globalMax: This variable keeps track of the maximum path sum encountered so far across the entire tree.

  3. leftMax and rightMax: For each node, we calculate the maximum path sum for its left child and right child.

  4. maxSingle: This represents the maximum path sum considering the current node as an endpoint. This is calculated as the maximum of:

  • The node's value itself.
  • The node's value + maximum path sum of the left child.
  • The node's value + maximum path sum of the right child.
  1. maxTop: This represents the maximum path sum that could be formed using the current node. This is calculated as the maximum of:
  • maxSingle (as explained above).
  • The path sum considering both left and right children + the current node's value.
  1. globalMax update: For each node, we update the globalMax to be the maximum of the current globalMax and maxTop.

  2. Returning from helper function: We return maxSingle because this represents the maximum value that can be used to form a path sum for the current node's parent.

  3. maxPathSum function: This function initializes the globalMax to the smallest possible integer value and then calls the helper function to traverse the tree and find the maximum path sum. Finally, it returns the globalMax.

Code:
c 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int helper(struct TreeNode* root, int* globalMax) {
    if (!root) {
        return 0;
    }

    int leftMax = helper(root->left, globalMax);
    int rightMax = helper(root->right, globalMax);

    int maxSingle = fmax(fmax(leftMax, rightMax) + root->val, root->val);
    int maxTop = fmax(maxSingle, leftMax + rightMax + root->val);

    *globalMax = fmax(*globalMax, maxTop);

    return maxSingle;
}

int maxPathSum(struct TreeNode* root) {
    int globalMax = INT_MIN;
    helper(root, &globalMax);
    return globalMax;
}
相关推荐
前端 贾公子17 分钟前
《Vuejs设计与实现》第 5 章(非原始值响应式方案)下 Set 和 Map 的响应式代理
数据结构·算法
say_fall23 分钟前
精通C语言(2.结构体)(内含彩虹)
c语言·开发语言·windows
WWZZ20252 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
running thunderbolt2 小时前
项目---网络通信组件JsonRpc
linux·服务器·c语言·开发语言·网络·c++·性能优化
小马学嵌入式~2 小时前
堆排序原理与实现详解
开发语言·数据结构·学习·算法
青岛少儿编程-王老师2 小时前
CCF编程能力等级认证GESP—C++6级—20250927
java·c++·算法
一人の梅雨2 小时前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
Miraitowa_cheems3 小时前
LeetCode算法日记 - Day 64: 岛屿的最大面积、被围绕的区域
java·算法·leetcode·决策树·职场和发展·深度优先·推荐算法
egoist20233 小时前
[linux仓库]信号快速认识[进程信号·壹]
linux·c语言·信号处理·信号·前后台进程
Christo33 小时前
关于K-means和FCM的凸性问题讨论
人工智能·算法·机器学习·数据挖掘·kmeans