LeetCode //C - 124. Binary Tree Maximum Path Sum

124. Binary Tree Maximum Path Sum

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node's values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:

Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

  • The number of nodes in the tree is in the range [ 1 , 3 ∗ 1 0 4 1, 3 * 10^4 1,3∗104]
  • -1000 <= Node.val <= 1000

From: LeetCode

Link: 124. Binary Tree Maximum Path Sum


Solution:

Ideas:

Overview:

The problem is to find the maximum path sum in a binary tree. A "path" here means any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

Approach:

To solve this problem, we perform a post-order traversal of the tree. For each node, we calculate two things:

  1. The maximum path sum considering the current node as an endpoint.
  2. The maximum path sum that could be formed using the current node, which might include paths from its left and/or right child.

The reason we need both values is that while the first one (endpoint value) helps us build the path sum for the parent node, the second value (including the current node) helps us track the global maximum path sum across the tree.

Code Explanation:

  1. helper function: This is a recursive function that traverses the binary tree in a post-order manner. It calculates the maximum path sum for each node and updates the global maximum path sum.

  2. globalMax: This variable keeps track of the maximum path sum encountered so far across the entire tree.

  3. leftMax and rightMax: For each node, we calculate the maximum path sum for its left child and right child.

  4. maxSingle: This represents the maximum path sum considering the current node as an endpoint. This is calculated as the maximum of:

  • The node's value itself.
  • The node's value + maximum path sum of the left child.
  • The node's value + maximum path sum of the right child.
  1. maxTop: This represents the maximum path sum that could be formed using the current node. This is calculated as the maximum of:
  • maxSingle (as explained above).
  • The path sum considering both left and right children + the current node's value.
  1. globalMax update: For each node, we update the globalMax to be the maximum of the current globalMax and maxTop.

  2. Returning from helper function: We return maxSingle because this represents the maximum value that can be used to form a path sum for the current node's parent.

  3. maxPathSum function: This function initializes the globalMax to the smallest possible integer value and then calls the helper function to traverse the tree and find the maximum path sum. Finally, it returns the globalMax.

Code:
c 复制代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int helper(struct TreeNode* root, int* globalMax) {
    if (!root) {
        return 0;
    }

    int leftMax = helper(root->left, globalMax);
    int rightMax = helper(root->right, globalMax);

    int maxSingle = fmax(fmax(leftMax, rightMax) + root->val, root->val);
    int maxTop = fmax(maxSingle, leftMax + rightMax + root->val);

    *globalMax = fmax(*globalMax, maxTop);

    return maxSingle;
}

int maxPathSum(struct TreeNode* root) {
    int globalMax = INT_MIN;
    helper(root, &globalMax);
    return globalMax;
}
相关推荐
薛定谔的算法3 分钟前
JavaScript栈的实现与应用:从基础到实战
前端·javascript·算法
羚羊角uou9 分钟前
【Linux】匿名管道和进程池
linux·c++·算法
曙曙学编程26 分钟前
stm32——独立看门狗,RTC
c语言·c++·stm32·单片机·嵌入式硬件
空白到白1 小时前
决策树-面试题
算法·决策树·机器学习
flashlight_hi1 小时前
LeetCode 分类刷题:2563. 统计公平数对的数目
python·算法·leetcode
前端世界1 小时前
HarmonyOS 数据处理性能优化:算法 + 异步 + 分布式实战
算法·性能优化·harmonyos
楼田莉子1 小时前
C++算法专题学习:栈相关的算法
开发语言·c++·算法·leetcode
晨非辰2 小时前
#C语言——刷题攻略:牛客编程入门训练(九):攻克 分支控制(三)、循环控制(一),轻松拿捏!
c语言·开发语言·经验分享·学习方法·visual studio
dragoooon342 小时前
[数据结构——lesson3.单链表]
数据结构·c++·leetcode·学习方法
陈序猿(代码自用版)2 小时前
【考研C语言编程题】数组元素批量插入实现(含图示+三部曲拆解)
c语言·开发语言·考研