《动手学深度学习 Pytorch版》 4.10 实战Kaggle比赛:预测比赛

4.10.1 下载和缓存数据集

python 复制代码
import hashlib
import os
import tarfile
import zipfile
import requests

#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
python 复制代码
def download(name, cache_dir=os.path.join('..', 'data')):  #@save
    """下载一个DATA_HUB中的文件,返回本地文件名"""
    assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
    url, sha1_hash = DATA_HUB[name]
    os.makedirs(cache_dir, exist_ok=True)
    fname = os.path.join(cache_dir, url.split('/')[-1])
    if os.path.exists(fname):
        sha1 = hashlib.sha1()
        with open(fname, 'rb') as f:
            while True:
                data = f.read(1048576)
                if not data:
                    break
                sha1.update(data)
        if sha1.hexdigest() == sha1_hash:
            return fname  # 命中缓存
    print(f'正在从{url}下载{fname}...')
    r = requests.get(url, stream=True, verify=True)
    with open(fname, 'wb') as f:
        f.write(r.content)
    return fname
python 复制代码
def download_extract(name, folder=None):  #@save
    """下载并解压zip/tar文件"""
    fname = download(name)
    base_dir = os.path.dirname(fname)
    data_dir, ext = os.path.splitext(fname)
    if ext == '.zip':
        fp = zipfile.ZipFile(fname, 'r')
    elif ext in ('.tar', '.gz'):
        fp = tarfile.open(fname, 'r')
    else:
        assert False, '只有zip/tar文件可以被解压缩'
    fp.extractall(base_dir)
    return os.path.join(base_dir, folder) if folder else data_dir

def download_all():  #@save
    """下载DATA_HUB中的所有文件"""
    for name in DATA_HUB:
        download(name)

4.10.2 Kaggle

好久没用的老帐号给我删了?

4.10.3 访问和读取数据集

python 复制代码
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2l
python 复制代码
# 使用前面定义的脚本下载并缓存数据

DATA_HUB['kaggle_house_train'] = (  #@save
    DATA_URL + 'kaggle_house_pred_train.csv',
    '585e9cc93e70b39160e7921475f9bcd7d31219ce')

DATA_HUB['kaggle_house_test'] = (  #@save
    DATA_URL + 'kaggle_house_pred_test.csv',
    'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
python 复制代码
# 使用pandas分别加载数据

train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))
python 复制代码
print(train_data.shape)
print(test_data.shape)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])  # 查看前四个和后两个
(1460, 81)
(1459, 80)
   Id  MSSubClass MSZoning  LotFrontage SaleType SaleCondition  SalePrice
0   1          60       RL         65.0       WD        Normal     208500
1   2          20       RL         80.0       WD        Normal     181500
2   3          60       RL         68.0       WD        Normal     223500
3   4          70       RL         60.0       WD       Abnorml     140000
python 复制代码
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))  # 删除不带预测信息的Id

4.10.4 数据预处理

python 复制代码
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index  # 定位数值列
all_features[numeric_features] = all_features[numeric_features].apply(
    lambda x: (x - x.mean()) / (x.std()))  # 标准化数据
all_features[numeric_features] = all_features[numeric_features].fillna(0)  # 将缺失值设为0
python 复制代码
# 处理离散值 "Dummy_na=True"将"na"(缺失值)视为有效的特征值,并为其创建指示符特征

all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
(2919, 331)
python 复制代码
n_train = train_data.shape[0]  # 获取样本数
# 从pandas格式中提取NumPy格式,并将其转换为张量表示用于训练
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(
    train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

4.10.5 训练

python 复制代码
# 整一个带有损失平方的线性模型作为基线模型

loss = nn.MSELoss()
in_features = train_features.shape[1]

def get_net():
    # net = nn.Sequential(nn.Linear(in_features, 1))
    net = nn.Sequential(nn.Linear(in_features, 256),
                        nn.ReLU(),
                        nn.Linear(256, 64),
                        nn.ReLU(),
                        nn.Linear(64, 1))
    return net
python 复制代码
# 由于房价预测更在意相对误差,故进行取对数处理

def log_rmse(net, features, labels):
    clipped_preds = torch.clamp(net(features), 1, float('inf'))  # 将房价范围限制在1到无穷大,进一步稳定其值
    rmse = torch.sqrt(loss(torch.log(clipped_preds),
                           torch.log(labels)))  # 取对数再算均方根误差
    return rmse.item()
python 复制代码
# 使用对学习率不敏感的Adam优化器

def train(net, train_features, train_labels, test_features, test_labels,
          num_epochs, learning_rate, weight_decay, batch_size):
    train_ls, test_ls = [], []
    train_iter = d2l.load_array((train_features, train_labels), batch_size)  # 加载训练集数据
    optimizer = torch.optim.Adam(net.parameters(),
                                 lr = learning_rate,
                                 weight_decay = weight_decay)  # 使用Adam优化算法
    for epoch in range(num_epochs):
        for X, y in train_iter:
            optimizer.zero_grad()
            l = loss(net(X), y)
            l.backward()
            optimizer.step()
        train_ls.append(log_rmse(net, train_features, train_labels))
        if test_labels is not None:
            test_ls.append(log_rmse(net, test_features, test_labels))
    return train_ls, test_ls

4.10.6 K折交叉验证

python 复制代码
def get_k_fold_data(k, i, X, y):
    assert k > 1
    fold_size = X.shape[0] // k  # 计算子集数据量
    X_train, y_train = None, None
    for j in range(k):
        idx = slice(j * fold_size, (j + 1) * fold_size)
        X_part, y_part = X[idx, :], y[idx]  # 截取当前子集数据
        if j == i:
            X_valid, y_valid = X_part, y_part
        elif X_train is None:
            X_train, y_train = X_part, y_part
        else:
            X_train = torch.cat([X_train, X_part], 0)
            y_train = torch.cat([y_train, y_part], 0)
    return X_train, y_train, X_valid, y_valid
python 复制代码
# 完成训练后需要求误差的平均值

def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
           batch_size):
    train_l_sum, valid_l_sum = 0, 0
    for i in range(k):
        data = get_k_fold_data(k, i, X_train, y_train)
        net = get_net()
        train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
                                   weight_decay, batch_size)
        train_l_sum += train_ls[-1]
        valid_l_sum += valid_ls[-1]
        if i == 0:
            d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
                     xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
                     legend=['train', 'valid'], yscale='log')
        print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
              f'验证log rmse{float(valid_ls[-1]):f}')
    return train_l_sum / k, valid_l_sum / k

4.10.7 模型选择

python 复制代码
k, num_epochs, lr, weight_decay, batch_size = 10, 100, 0.03, 0.05, 256
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
                          weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
      f'平均验证log rmse: {float(valid_l):f}')
折1,训练log rmse0.099098, 验证log rmse0.162470
折2,训练log rmse0.091712, 验证log rmse0.114310
折3,训练log rmse0.107151, 验证log rmse0.151471
折4,训练log rmse0.103659, 验证log rmse0.167303
折5,训练log rmse0.102100, 验证log rmse0.165151
折6,训练log rmse0.110199, 验证log rmse0.131012
折7,训练log rmse0.105075, 验证log rmse0.146769
折8,训练log rmse0.109164, 验证log rmse0.123824
折9,训练log rmse0.096305, 验证log rmse0.174747
折10,训练log rmse0.096146, 验证log rmse0.136332
10-折验证: 平均训练log rmse: 0.102061, 平均验证log rmse: 0.147339

4.10.8 提交 Kaggle 预测

python 复制代码
def train_and_pred(train_features, test_features, train_labels, test_data,
                   num_epochs, lr, weight_decay, batch_size):
    net = get_net()
    train_ls, _ = train(net, train_features, train_labels, None, None,
                        num_epochs, lr, weight_decay, batch_size)
    d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
             ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
    print(f'训练log rmse:{float(train_ls[-1]):f}')
    # 将网络应用于测试集。
    preds = net(test_features).detach().numpy()
    # 将其重新格式化以导出到Kaggle
    test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
    submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
    submission.to_csv('submission.csv', index=False)
python 复制代码
train_and_pred(train_features, test_features, train_labels, test_data,
               num_epochs, lr, weight_decay, batch_size)
训练log rmse:0.091832
相关推荐
爱丫爱几秒前
Python中常见库 PyTorch和Pydantic 讲解
开发语言·pytorch·python
天天向上杰9 分钟前
通义灵码AI程序员
人工智能·aigc·ai编程
sendnews19 分钟前
AI赋能教育,小猿搜题系列产品携手DeepSeek打造个性化学习新体验
人工智能
紫雾凌寒31 分钟前
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
人工智能·python·神经网络·算法·机器学习·卷积神经网络
WBingJ41 分钟前
2月17日深度学习日记
人工智能
zhengyawen66642 分钟前
深度学习之图像分类(一)
人工智能·深度学习·分类
莫莫莫i1 小时前
拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
人工智能·微软·量子计算
C#Thread1 小时前
机器视觉--图像的运算(加法)
图像处理·人工智能·计算机视觉
无极工作室(网络安全)1 小时前
机器学习小项目之鸢尾花分类
人工智能·机器学习·分类
涛涛讲AI1 小时前
文心一言大模型的“三级跳”:从收费到免费再到开源,一场AI生态的重构实验
人工智能·百度·大模型·deepseek