Transformers库中的pipeline模块支持的NLP任务

Transformers库中的pipeline模块支持的NLP任务

Transformers库中的pipeline模块支持以下的NLP任务:

  • Text Classification(文本分类):文本分类任务,比如情感分析, toxicity检测等。
  • Token Classification(标记分类): 序列标记任务,比如命名实体识别, 部分性提取等。
  • Question Answering(问答):question answering任务,可以回答给定问题的答案。
  • Fill Mask(填充掩码):使用模型预测被掩码的词语。
  • Summarization(文本摘要): 文本摘要任务,可以自动生成文本摘要。
  • Translation(翻译):机器翻译任务,可以翻译不同语言。
  • Feature Extraction(特征提取):从文本中提取语义特征向量。
  • Conversational(对话):用于任务型对话,可以问答。
  • Text Generation(文本生成):自动生成文本。
  • Sentiment Analysis(情感分析):情感分析,判断文本情感极性。
  • Named Entity Recognition (NER)(命名实体识别):命名实体识别,找出文本中实体。
  • 等等
    使用pipeline可以便捷地完成这些NLP 下游任务,无需训练模型,通过指定任务类型、模型名称即可使用。它封装了模型和tokenization,可以快速上手NLP项目。

2023年9月,产品 pipeline 的代码,全列表如下,

  • "audio-classification": will return a [AudioClassificationPipeline].
  • "automatic-speech-recognition": will return a [AutomaticSpeechRecognitionPipeline].
  • "conversational": will return a [ConversationalPipeline].
  • "depth-estimation": will return a [DepthEstimationPipeline].
  • "document-question-answering": will return a [DocumentQuestionAnsweringPipeline].
  • "feature-extraction": will return a [FeatureExtractionPipeline].
  • "fill-mask": will return a [FillMaskPipeline]:.
  • "image-classification": will return a [ImageClassificationPipeline].
  • "image-segmentation": will return a [ImageSegmentationPipeline].
  • "image-to-text": will return a [ImageToTextPipeline].
  • "mask-generation": will return a [MaskGenerationPipeline].
  • "object-detection": will return a [ObjectDetectionPipeline].
  • "question-answering": will return a [QuestionAnsweringPipeline].
  • "summarization": will return a [SummarizationPipeline].
  • "table-question-answering": will return a [TableQuestionAnsweringPipeline].
  • "text2text-generation": will return a [Text2TextGenerationPipeline].
  • "text-classification" (alias "sentiment-analysis" available): will return a

    `TextClassificationPipeline`\].

  • "token-classification" (alias "ner" available): will return a [TokenClassificationPipeline].
  • "translation": will return a [TranslationPipeline].
  • "translation_xx_to_yy": will return a [TranslationPipeline].
  • "video-classification": will return a [VideoClassificationPipeline].
  • "visual-question-answering": will return a [VisualQuestionAnsweringPipeline].
  • "zero-shot-classification": will return a [ZeroShotClassificationPipeline].
  • "zero-shot-image-classification": will return a [ZeroShotImageClassificationPipeline].
  • "zero-shot-audio-classification": will return a [ZeroShotAudioClassificationPipeline].
  • "zero-shot-object-detection": will return a [ZeroShotObjectDetectionPipeline].

完结!

相关推荐
aigcapi4 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪5 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭5 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力5 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.1185 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_5 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋5 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_5 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp6 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee6 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程