Transformers库中的pipeline模块支持的NLP任务

Transformers库中的pipeline模块支持的NLP任务

Transformers库中的pipeline模块支持以下的NLP任务:

  • Text Classification(文本分类):文本分类任务,比如情感分析, toxicity检测等。
  • Token Classification(标记分类): 序列标记任务,比如命名实体识别, 部分性提取等。
  • Question Answering(问答):question answering任务,可以回答给定问题的答案。
  • Fill Mask(填充掩码):使用模型预测被掩码的词语。
  • Summarization(文本摘要): 文本摘要任务,可以自动生成文本摘要。
  • Translation(翻译):机器翻译任务,可以翻译不同语言。
  • Feature Extraction(特征提取):从文本中提取语义特征向量。
  • Conversational(对话):用于任务型对话,可以问答。
  • Text Generation(文本生成):自动生成文本。
  • Sentiment Analysis(情感分析):情感分析,判断文本情感极性。
  • Named Entity Recognition (NER)(命名实体识别):命名实体识别,找出文本中实体。
  • 等等
    使用pipeline可以便捷地完成这些NLP 下游任务,无需训练模型,通过指定任务类型、模型名称即可使用。它封装了模型和tokenization,可以快速上手NLP项目。

2023年9月,产品 pipeline 的代码,全列表如下,

  • "audio-classification": will return a [AudioClassificationPipeline].
  • "automatic-speech-recognition": will return a [AutomaticSpeechRecognitionPipeline].
  • "conversational": will return a [ConversationalPipeline].
  • "depth-estimation": will return a [DepthEstimationPipeline].
  • "document-question-answering": will return a [DocumentQuestionAnsweringPipeline].
  • "feature-extraction": will return a [FeatureExtractionPipeline].
  • "fill-mask": will return a [FillMaskPipeline]:.
  • "image-classification": will return a [ImageClassificationPipeline].
  • "image-segmentation": will return a [ImageSegmentationPipeline].
  • "image-to-text": will return a [ImageToTextPipeline].
  • "mask-generation": will return a [MaskGenerationPipeline].
  • "object-detection": will return a [ObjectDetectionPipeline].
  • "question-answering": will return a [QuestionAnsweringPipeline].
  • "summarization": will return a [SummarizationPipeline].
  • "table-question-answering": will return a [TableQuestionAnsweringPipeline].
  • "text2text-generation": will return a [Text2TextGenerationPipeline].
  • "text-classification" (alias "sentiment-analysis" available): will return a
    [TextClassificationPipeline].
  • "text-generation": will return a [TextGenerationPipeline]:.
  • "token-classification" (alias "ner" available): will return a [TokenClassificationPipeline].
  • "translation": will return a [TranslationPipeline].
  • "translation_xx_to_yy": will return a [TranslationPipeline].
  • "video-classification": will return a [VideoClassificationPipeline].
  • "visual-question-answering": will return a [VisualQuestionAnsweringPipeline].
  • "zero-shot-classification": will return a [ZeroShotClassificationPipeline].
  • "zero-shot-image-classification": will return a [ZeroShotImageClassificationPipeline].
  • "zero-shot-audio-classification": will return a [ZeroShotAudioClassificationPipeline].
  • "zero-shot-object-detection": will return a [ZeroShotObjectDetectionPipeline].

完结!

相关推荐
volcanical16 分钟前
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
人工智能·自然语言处理·机器翻译
大知闲闲哟18 分钟前
深度学习J6周 ResNeXt-50实战解析
人工智能·深度学习
静静AI学堂1 小时前
Yolo11改策略:卷积改进|SAC,提升模型对小目标和遮挡目标的检测性能|即插即用
人工智能·深度学习·目标跟踪
martian6651 小时前
【人工智能离散数学基础】——深入详解数理逻辑:理解基础逻辑概念,支持推理和决策系统
人工智能·数理逻辑·推理·决策系统
Schwertlilien1 小时前
图像处理-Ch7-图像金字塔和其他变换
图像处理·人工智能
Hello_WOAIAI1 小时前
大模型时代的NL2SQL初探
自然语言处理·text2sql·nl2sql
凡人的AI工具箱1 小时前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜2 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤2 小时前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改
凡人的AI工具箱2 小时前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django