数据结构——二分查找法

二分查找法(Binary Search)是一种高效的查找算法,通常用于在已排序的数组或列表中查找特定的目标值。这个算法的基本思想是不断将查找范围缩小为原来的一半,直到找到目标值或确定目标值不存在。

二分查找是一种在每次比较之后将查找空间一分为二的算法。每次需要查找集合中的索引或元素时,都应该考虑二分查找。如果集合是无序的,我们可以总是在应用二分查找之前先对其进行排序。

二分查找一般由三个主要部分组成:

1.预处理一如果集合未排序,则进行排序.

2.二分查找一 使用循环或递归在每次比较后将查找空间划分为两半

  1. 后处理在剩余空间中确定可行的候选者

1.二分查找函数 是二分查找的最基础和最基本的形式。这是一个标准的二分查找模板

cpp 复制代码
int binarySearch(const std::vector<int>& arr, int target) {
    int left = 0;
    int right = arr.size() - 1;

    while (left <= right) {
        int mid = left + (right - left) / 2;

        if (arr[mid] == target) {
            return mid; // 找到目标值,返回其索引
        }
        else if (arr[mid] < target) {
            left = mid + 1; // 目标值在右半部分
        }
        else {
            right = mid - 1; // 目标值在左半部分
        }
    }

    return -1; // 目标值不存在
}

2.二分查找函数 是二分查找的高级模板。它用于查找需要访问数组中当前索引及其直接右邻居索引的元素或条件。

cpp 复制代码
int binarySearch(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size();

    while (left < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target)
        { 
            return mid;
        }
        else if (nums[mid] < target) 
        { 
            left = mid + 1; 
        }
        else 
        { 
            right = mid; 
        }
    }

    // Post-processing:
    // End Condition: left == right
    if (left != nums.size() && nums[left] == target) 
        return left;

    return -1;
}

3.二分查找函数 是二分查找的另一种独特形式。 它用于搜索需要访问当前索引及其在数组中的直接左右邻居索引的元素或条件。

cpp 复制代码
int binarySearch3(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size() - 1;
    while (left + 1 < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) 
        {
            return mid;
        }
        else if (nums[mid] < target)
        {
            left = mid;
        }
        else
        {
            right = mid;
        }
    }

    // Post-processing:
    // End Condition: left + 1 == right
    if (nums[left] == target)
        return left;

    if (nums[right] == target)
        return right;

    return -1;
}
相关推荐
我是谁??29 分钟前
C/C++使用AddressSanitizer检测内存错误
c语言·c++
小码农<^_^>31 分钟前
优选算法精品课--滑动窗口算法(一)
算法
羊小猪~~33 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡1 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
南宫生1 小时前
贪心算法习题其三【力扣】【算法学习day.20】
java·数据结构·学习·算法·leetcode·贪心算法
发霉的闲鱼1 小时前
MFC 重写了listControl类(类名为A),并把双击事件的处理函数定义在A中,主窗口如何接收表格是否被双击
c++·mfc
小c君tt1 小时前
MFC中Excel的导入以及使用步骤
c++·excel·mfc
xiaoxiao涛1 小时前
协程6 --- HOOK
c++·协程
AI视觉网奇1 小时前
sklearn 安装使用笔记
人工智能·算法·sklearn
JingHongB2 小时前
代码随想录算法训练营Day55 | 图论理论基础、深度优先搜索理论基础、卡玛网 98.所有可达路径、797. 所有可能的路径、广度优先搜索理论基础
算法·深度优先·图论