数据结构——二分查找法

二分查找法(Binary Search)是一种高效的查找算法,通常用于在已排序的数组或列表中查找特定的目标值。这个算法的基本思想是不断将查找范围缩小为原来的一半,直到找到目标值或确定目标值不存在。

二分查找是一种在每次比较之后将查找空间一分为二的算法。每次需要查找集合中的索引或元素时,都应该考虑二分查找。如果集合是无序的,我们可以总是在应用二分查找之前先对其进行排序。

二分查找一般由三个主要部分组成:

1.预处理一如果集合未排序,则进行排序.

2.二分查找一 使用循环或递归在每次比较后将查找空间划分为两半

  1. 后处理在剩余空间中确定可行的候选者

1.二分查找函数 是二分查找的最基础和最基本的形式。这是一个标准的二分查找模板

cpp 复制代码
int binarySearch(const std::vector<int>& arr, int target) {
    int left = 0;
    int right = arr.size() - 1;

    while (left <= right) {
        int mid = left + (right - left) / 2;

        if (arr[mid] == target) {
            return mid; // 找到目标值,返回其索引
        }
        else if (arr[mid] < target) {
            left = mid + 1; // 目标值在右半部分
        }
        else {
            right = mid - 1; // 目标值在左半部分
        }
    }

    return -1; // 目标值不存在
}

2.二分查找函数 是二分查找的高级模板。它用于查找需要访问数组中当前索引及其直接右邻居索引的元素或条件。

cpp 复制代码
int binarySearch(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size();

    while (left < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target)
        { 
            return mid;
        }
        else if (nums[mid] < target) 
        { 
            left = mid + 1; 
        }
        else 
        { 
            right = mid; 
        }
    }

    // Post-processing:
    // End Condition: left == right
    if (left != nums.size() && nums[left] == target) 
        return left;

    return -1;
}

3.二分查找函数 是二分查找的另一种独特形式。 它用于搜索需要访问当前索引及其在数组中的直接左右邻居索引的元素或条件。

cpp 复制代码
int binarySearch3(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size() - 1;
    while (left + 1 < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) 
        {
            return mid;
        }
        else if (nums[mid] < target)
        {
            left = mid;
        }
        else
        {
            right = mid;
        }
    }

    // Post-processing:
    // End Condition: left + 1 == right
    if (nums[left] == target)
        return left;

    if (nums[right] == target)
        return right;

    return -1;
}
相关推荐
RickyWasYoung1 分钟前
【笔记】矩阵的谱半径
笔记·算法·矩阵
一分之二~5 分钟前
回溯算法--递增子序列
开发语言·数据结构·算法·leetcode
m0_639397297 分钟前
代码随想录算法训练营第五十天|图论理论基础,深搜理论基础,98. 所有可达路径,广搜理论基础
算法·图论
Yu_Lijing8 分钟前
基于C++的《Head First设计模式》笔记——策略模式
c++·笔记·设计模式
鸿儒51712 分钟前
记录一个C++操作8位影像的一个bug
开发语言·c++·bug
脏脏a13 分钟前
深度剖析 C++ string:从 0 到 1 的模拟实现与细节解析
开发语言·c++
智驱力人工智能13 分钟前
无人机车辆密度检测系统价格 询价准备 需要明确哪些参数 物流园区无人机车辆调度系统 无人机多模态车流密度检测技术
深度学习·算法·安全·yolo·无人机·边缘计算
福尔摩斯张14 分钟前
【实战】C/C++ 实现 PC 热点(手动开启)+ 手机 UDP 自动发现 + TCP 通信全流程(超详细)
linux·c语言·c++·tcp/ip·算法·智能手机·udp
罗湖老棍子14 分钟前
【例3-3】医院设置(信息学奥赛一本通- P1338)
数据结构·c++·算法·
不想写笔记16 分钟前
算法 C语言 冒泡排序
c语言·笔记·算法·排序算法