数据结构——二分查找法

二分查找法(Binary Search)是一种高效的查找算法,通常用于在已排序的数组或列表中查找特定的目标值。这个算法的基本思想是不断将查找范围缩小为原来的一半,直到找到目标值或确定目标值不存在。

二分查找是一种在每次比较之后将查找空间一分为二的算法。每次需要查找集合中的索引或元素时,都应该考虑二分查找。如果集合是无序的,我们可以总是在应用二分查找之前先对其进行排序。

二分查找一般由三个主要部分组成:

1.预处理一如果集合未排序,则进行排序.

2.二分查找一 使用循环或递归在每次比较后将查找空间划分为两半

  1. 后处理在剩余空间中确定可行的候选者

1.二分查找函数 是二分查找的最基础和最基本的形式。这是一个标准的二分查找模板

cpp 复制代码
int binarySearch(const std::vector<int>& arr, int target) {
    int left = 0;
    int right = arr.size() - 1;

    while (left <= right) {
        int mid = left + (right - left) / 2;

        if (arr[mid] == target) {
            return mid; // 找到目标值,返回其索引
        }
        else if (arr[mid] < target) {
            left = mid + 1; // 目标值在右半部分
        }
        else {
            right = mid - 1; // 目标值在左半部分
        }
    }

    return -1; // 目标值不存在
}

2.二分查找函数 是二分查找的高级模板。它用于查找需要访问数组中当前索引及其直接右邻居索引的元素或条件。

cpp 复制代码
int binarySearch(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size();

    while (left < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target)
        { 
            return mid;
        }
        else if (nums[mid] < target) 
        { 
            left = mid + 1; 
        }
        else 
        { 
            right = mid; 
        }
    }

    // Post-processing:
    // End Condition: left == right
    if (left != nums.size() && nums[left] == target) 
        return left;

    return -1;
}

3.二分查找函数 是二分查找的另一种独特形式。 它用于搜索需要访问当前索引及其在数组中的直接左右邻居索引的元素或条件。

cpp 复制代码
int binarySearch3(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size() - 1;
    while (left + 1 < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) 
        {
            return mid;
        }
        else if (nums[mid] < target)
        {
            left = mid;
        }
        else
        {
            right = mid;
        }
    }

    // Post-processing:
    // End Condition: left + 1 == right
    if (nums[left] == target)
        return left;

    if (nums[right] == target)
        return right;

    return -1;
}
相关推荐
404未精通的狗几秒前
(数据结构)栈和队列
android·数据结构
Zero不爱吃饭15 分钟前
将有序数组转换为二叉搜索树
数据结构·算法
这个世界的真神21 分钟前
【每日算法】 洛谷 P12341 【[蓝桥杯 2025 省 A/Python B 第二场] 消消乐】 2025.10.26
python·算法·蓝桥杯
l1t28 分钟前
利用DeepSeek改写递归CTE SQL语句为Python程序及优化
数据库·人工智能·python·sql·算法·性能优化·deepseek
Skrrapper30 分钟前
【C++】C++ 中的 map
开发语言·c++
杨福瑞1 小时前
数据结构:顺序表讲解(总)
c语言·数据结构
m0_748233641 小时前
【C++list】底层结构、迭代器核心原理与常用接口实现全解析
c++·windows·list
qq_310658512 小时前
webrtc代码走读(八)-QOS-FEC-flexfec rfc8627
网络·c++·webrtc
workflower2 小时前
微软PM的来历
java·开发语言·算法·microsoft·django·结对编程
惊讶的猫2 小时前
c++基础
开发语言·c++