数据结构——二分查找法

二分查找法(Binary Search)是一种高效的查找算法,通常用于在已排序的数组或列表中查找特定的目标值。这个算法的基本思想是不断将查找范围缩小为原来的一半,直到找到目标值或确定目标值不存在。

二分查找是一种在每次比较之后将查找空间一分为二的算法。每次需要查找集合中的索引或元素时,都应该考虑二分查找。如果集合是无序的,我们可以总是在应用二分查找之前先对其进行排序。

二分查找一般由三个主要部分组成:

1.预处理一如果集合未排序,则进行排序.

2.二分查找一 使用循环或递归在每次比较后将查找空间划分为两半

  1. 后处理在剩余空间中确定可行的候选者

1.二分查找函数 是二分查找的最基础和最基本的形式。这是一个标准的二分查找模板

cpp 复制代码
int binarySearch(const std::vector<int>& arr, int target) {
    int left = 0;
    int right = arr.size() - 1;

    while (left <= right) {
        int mid = left + (right - left) / 2;

        if (arr[mid] == target) {
            return mid; // 找到目标值,返回其索引
        }
        else if (arr[mid] < target) {
            left = mid + 1; // 目标值在右半部分
        }
        else {
            right = mid - 1; // 目标值在左半部分
        }
    }

    return -1; // 目标值不存在
}

2.二分查找函数 是二分查找的高级模板。它用于查找需要访问数组中当前索引及其直接右邻居索引的元素或条件。

cpp 复制代码
int binarySearch(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size();

    while (left < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target)
        { 
            return mid;
        }
        else if (nums[mid] < target) 
        { 
            left = mid + 1; 
        }
        else 
        { 
            right = mid; 
        }
    }

    // Post-processing:
    // End Condition: left == right
    if (left != nums.size() && nums[left] == target) 
        return left;

    return -1;
}

3.二分查找函数 是二分查找的另一种独特形式。 它用于搜索需要访问当前索引及其在数组中的直接左右邻居索引的元素或条件。

cpp 复制代码
int binarySearch3(vector<int>& nums, int target) {
    if (nums.size() == 0)
        return -1;

    int left = 0, right = nums.size() - 1;
    while (left + 1 < right) {
        // Prevent (left + right) overflow
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) 
        {
            return mid;
        }
        else if (nums[mid] < target)
        {
            left = mid;
        }
        else
        {
            right = mid;
        }
    }

    // Post-processing:
    // End Condition: left + 1 == right
    if (nums[left] == target)
        return left;

    if (nums[right] == target)
        return right;

    return -1;
}
相关推荐
EterNity_TiMe_5 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
长弓聊编程6 分钟前
Linux系统使用valgrind分析C++程序内存资源使用情况
linux·c++
cherub.13 分钟前
深入解析信号量:定义与环形队列生产消费模型剖析
linux·c++
机器学习之心15 分钟前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
yyt_cdeyyds26 分钟前
FIFO和LRU算法实现操作系统中主存管理
算法
暮色_年华27 分钟前
Modern Effective C++item 9:优先考虑别名声明而非typedef
c++
重生之我是数学王子36 分钟前
QT基础 编码问题 定时器 事件 绘图事件 keyPressEvent QT5.12.3环境 C++实现
开发语言·c++·qt
daiyang123...1 小时前
测试岗位应该学什么
数据结构
alphaTao1 小时前
LeetCode 每日一题 2024/11/18-2024/11/24
算法·leetcode
我们的五年1 小时前
【Linux课程学习】:进程程序替换,execl,execv,execlp,execvp,execve,execle,execvpe函数
linux·c++·学习