From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting

本文是LLM系列的文章,针对《From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting》的翻译。

从稀疏到密集:密度链提示下的GPT-4摘要

  • 摘要
  • [1 引言](#1 引言)
  • [2 密度提升链](#2 密度提升链)
  • [3 统计数据](#3 统计数据)
  • [4 结果](#4 结果)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)
  • [7 局限性](#7 局限性)

摘要

选择要包含在摘要中的"正确"信息量是一项艰巨的任务。一个好的总结应该是详细的、以实体为中心的,而不是过于密集和难以遵循。为了更好地理解这种权衡,我们寻求越来越密集的GPT-4摘要,我们称之为"密度链"(CoD)提示。具体来说,GPT-4在不增加长度的情况下迭代合并缺失的显著实体之前,生成初始实体解析摘要。与普通提示生成的GPT-4摘要相比,CoD生成的摘要更抽象,表现出更多的融合,并且具有更少的潜在偏差。我们对美国有线电视新闻网每日邮报的100篇文章进行了人类偏好研究,发现人类更喜欢GPT-4摘要,这些摘要比普通提示生成的摘要更密集,几乎和人类书面摘要一样密集。定性分析支持这样一种观点,即在信息性和可读性之间存在权衡。HuggingFace上免费提供500份注释CoD摘要,以及额外的5000份未注释摘要。

1 引言

2 密度提升链

3 统计数据

4 结果

5 相关工作

6 结论

我们研究了概括致密化对人类整体素质偏好的影响。我们发现,优选一定程度的致密化,然而,当摘要每个token包含太多实体时,很难保持可读性和一致性。我们开源了带注释的测试集以及更大的未带注释的训练集,以进一步研究固定长度、可变密度摘要的主题。

7 局限性

我们只分析单一领域的CoD,即新闻摘要。注释没有显示出高度的汇总级别一致性,但确实开始显示系统级别的趋势,这与之前基于LLM的评估工作一致。最后,GPT-4是一个闭源模型,因此我们不能共享模型权重。然而,我们确实发布了所有评估数据、注释,以及5000个未注释的CoD,用于下游用例,例如,密度蒸馏到开源模型中,如LLAMA-2。

相关推荐
池央3 分钟前
CANN oam-tools 诊断体系深度解析:自动化信息采集、AI Core 异常解析与 CI/CD 流水线集成策略
人工智能·ci/cd·自动化
CV@CV7 分钟前
2026自动驾驶商业化提速——从智驾平权到Robotaxi规模化落地
人工智能·机器学习·自动驾驶
财经三剑客8 分钟前
AI元年,春节出行安全有了更好的答案
大数据·人工智能·安全
艾莉丝努力练剑16 分钟前
图像处理全栈加速:ops-cv算子库在CV领域的应用
图像处理·人工智能
tq108618 分钟前
AI 时代的3类程序员
人工智能
island131419 分钟前
CANN ops-nn 算子库深度解析:核心算子(如激活函数、归一化)的数值精度控制与内存高效实现
开发语言·人工智能·神经网络
骥龙33 分钟前
第六篇:AI平台篇 - 从Jupyter Notebook到生产级模型服务
ide·人工智能·jupyter
TOPGUS34 分钟前
谷歌SEO第三季度点击率趋势:榜首统治力的衰退与流量的去中心化趋势
大数据·人工智能·搜索引擎·去中心化·区块链·seo·数字营销
松☆1 小时前
CANN深度解析:构建高效AI推理引擎的软件基
人工智能
ujainu1 小时前
CANN仓库中的AIGC可持续演进工程:昇腾AI软件栈如何构建“活”的开源生态
人工智能·开源·aigc