From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting

本文是LLM系列的文章,针对《From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting》的翻译。

从稀疏到密集:密度链提示下的GPT-4摘要

  • 摘要
  • [1 引言](#1 引言)
  • [2 密度提升链](#2 密度提升链)
  • [3 统计数据](#3 统计数据)
  • [4 结果](#4 结果)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)
  • [7 局限性](#7 局限性)

摘要

选择要包含在摘要中的"正确"信息量是一项艰巨的任务。一个好的总结应该是详细的、以实体为中心的,而不是过于密集和难以遵循。为了更好地理解这种权衡,我们寻求越来越密集的GPT-4摘要,我们称之为"密度链"(CoD)提示。具体来说,GPT-4在不增加长度的情况下迭代合并缺失的显著实体之前,生成初始实体解析摘要。与普通提示生成的GPT-4摘要相比,CoD生成的摘要更抽象,表现出更多的融合,并且具有更少的潜在偏差。我们对美国有线电视新闻网每日邮报的100篇文章进行了人类偏好研究,发现人类更喜欢GPT-4摘要,这些摘要比普通提示生成的摘要更密集,几乎和人类书面摘要一样密集。定性分析支持这样一种观点,即在信息性和可读性之间存在权衡。HuggingFace上免费提供500份注释CoD摘要,以及额外的5000份未注释摘要。

1 引言

2 密度提升链

3 统计数据

4 结果

5 相关工作

6 结论

我们研究了概括致密化对人类整体素质偏好的影响。我们发现,优选一定程度的致密化,然而,当摘要每个token包含太多实体时,很难保持可读性和一致性。我们开源了带注释的测试集以及更大的未带注释的训练集,以进一步研究固定长度、可变密度摘要的主题。

7 局限性

我们只分析单一领域的CoD,即新闻摘要。注释没有显示出高度的汇总级别一致性,但确实开始显示系统级别的趋势,这与之前基于LLM的评估工作一致。最后,GPT-4是一个闭源模型,因此我们不能共享模型权重。然而,我们确实发布了所有评估数据、注释,以及5000个未注释的CoD,用于下游用例,例如,密度蒸馏到开源模型中,如LLAMA-2。

相关推荐
极客学术工坊9 分钟前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
Theodore_10221 小时前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云2 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC4 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
chenzhiyuan20187 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1437 小时前
51c深度学习~合集11
人工智能
Tiandaren7 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号8 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯8 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl8 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活