LaaS LLM as a service

  • [LaaS LLM as a service](#LaaS LLM as a service)
    • 核心构成
    • [GPT 产业链如何进行商业化](#GPT 产业链如何进行商业化)
    • [LLM(Large Language Model) 发展和趋势](#LLM(Large Language Model) 发展和趋势)
    • [LLM(Large Language Model) 对于行业公司的分层](#LLM(Large Language Model) 对于行业公司的分层)
    • [LLM(Large Language Model) 的机遇和挑战](#LLM(Large Language Model) 的机遇和挑战)

LaaS LLM as a service

核心构成

  1. 计算:算力
  2. 模型:算法
  3. 输入:数据
  4. 输出:应用

GPT 产业链如何进行商业化

  1. 面向 C 端的订阅制会员模式
  2. 面向 B 端的 API 接口模式

C 端其它增收的方式

  1. Midjourney 作品分成(输出内容的增值税):作品允许商业化,但是超过某个利润阈值时,需要分 X% 的利润给 AI 平台
  2. 特定场景的按次付费:SEO 优化每千次多少钱
  3. 广告模式:在回答中嵌入与之相关的广告
  4. SaaS:植入在办公软件如 Office 中

B 端其它增收的方式

细分行业定制 LLM

LLM(Large Language Model) 发展和趋势

LLM(Large Language Model) 基于海量数据训练得到,他获得了海量知识

演化的过程

  1. GPT3 (175B)
  2. LaMDA (137B)
  3. Gopher (280B)
  4. FLAN-T5(540B)

业界通过对 LLM(Large Language Model) 的探索和应用,引导 LLM(Large Language Model) 挖掘里面的海量知识,得到最优秀的结果 (

state-of-the-art result,sota 过程),

演化的过程

  1. LLM(Large Language Model) 最开始通过预训练方式构建下游任务,来减少微调所需要的数据量
  2. LLM(Large Language Model) 通过各类 Prompt Engineering 方式,来减少微调所需要的数据量
  3. LLM(Large Language Model) 通过用非梯度更新的方式,使大模型无需微调情况下,拥有小样本、零样本解决问题的能力
  4. LLM(Large Language Model) 具备上下文学习(In-context learning)、上下文学习的矫正(Calibration) 能力
  5. LLM(Large Language Model) 通过一系列逻辑链(CoT, chain of thought) 解决数据推理问题
  6. LLM(Large Language Model) 通过结合行动驱动(Action-driven)、意图驱动来理解人类需求

LLM(Large Language Model) 对于行业公司的分层

  1. 基础设施公司
  2. 基于场景定制的 LLM 和升级服务
  3. 基于场景 LLM 产品进行的业务产品

到最终,基础设施公司只会有 1-2 家,形成行业垄断。基于场景定制的 LLM 和升级服务厂商会有一些头部厂商,以及海量的

基于场景 LLM 产品进行的业务产品的中小微企业

LLM(Large Language Model) 的机遇和挑战

LLM(Large Language Model) 必会带来新赛道的机遇,也必会越来越多的老方式被淘汰,跟不上节奏落伍的风险将会加大

LLM(Large Language Model) 可能导致的一些现象

  1. 大一统 NLP 领域,LLM(Large Language Model) 会让某些 NLP 的研究方向不再具备研究价值
  2. 从 LLM 应用角度来说,LLM-as-a-Service会越来越普遍 (OpenAI LLMaaS 的成本已经在开始指数级降低)
  3. LLM(Large Language Model) 在应用侧的盈利仍然是一个巨大的挑战,真正投入生产的挑战仍然巨大,即使在降本增效的大环境下
  4. LLM(Large Language Model) 真正投入生产的挑战仍然巨大
  5. LLM(Large Language Model) 在国内的产研环境下,高昂的使用成本和比较苛刻的使用条件(需要精细且明确的指令)仍然限制了它的赋能
  6. 当基础设施公司完成了 LLM(Large Language Model) 的基本商业化,OpenAl、Google、DeepMind 开始闭源,基础设施就形成了垄断能力
相关推荐
java_heartLake25 分钟前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生1 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11192 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li2 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
万事可爱^6 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
牧歌悠悠7 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬7 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬7 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian7 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT8 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理