文章目录
前言
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的
红黑树的性质:
- 每个结点不是红色就是黑色
- 根节点是黑色的
- 如果一个节点是红色的,则它的两个孩子结点是黑色的
- 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点 (每条路径上的黑色结点数量相同)
- 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
最短路径:全部都是黑节点的路径。
最长路径:一黑一红相间的路径
一、红黑树的插入操作
1.红黑树结点的定义
cpp
enum Color {
RED,
BLACK
};
template<class K,class V>
struct RBTreeNode {
RBTreeNode* _left;
RBTreeNode* _right;
RBTreeNode* _parent;
pair<K, V>_kv;
Color _col;//颜色
RBTreeNode(const pair<K,V>&kv)
:_left(nullptr),
_right(nullptr),
_parent(nullptr),
_kv(kv),
_col(RED)
//结点默认给成红色是为了方便后续的插入
//因为默认为黑色的话还需要考虑所有路径上黑色结点数量是否相同
//太麻烦了
{}
};
2.红黑树的插入
插入分为一下三种情况,因为我们插入的结点默认为红色,而红黑树定义中指出不能出现连续的两个红色结点 ,为了维持红黑树,我们需要对一些结点的颜色进行改变有时还需要旋转改变树的形状,至于有关旋转的函数Rotate ,我已经在之前AVL树的模拟实现中详细说明了,这里就不多在赘述了【C++】AVL树的插入操作实现以及验证是否正确(带平衡因子),有需要的可以去看一下。
1.uncle存在且为红
这种情况就不需要考虑旋转了
2.uncle不存在
3.uncle存在且为黑
总结:
红黑树插入关键看uncle
1.uncle存在且为红,变色(uncle与parent变黑色,grandfather变红色),之后继续向上处理
2.uncle不存在或者uncle存在且为黑,旋转加变色,之后break
3.小规律:grandfather在这个过程中要不本来就为红色,要不就变成红色
3.完整代码
cpp
template<class K,class V>
class RBTree {
typedef RBTreeNode<K,V> Node;
public:
bool Insert(const pair<K, V>& kv) {
if (_root == nullptr) {
//根节点必须为黑色
_root = new Node(kv);
_root->_col = BLACK;
return true;
}
Node* cur = _root;
Node* parent = nullptr;
while (cur) {//寻找插入位置
if (cur->_kv.first < kv.first) {
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first) {
parent = cur;
cur = cur->_left;
}
else {
return false;
}
}
cur = new Node(kv);
cur->_col = RED;
//插入对应位置,默认为红色
if (parent->_kv.first < kv.first) {
parent->_right = cur;
}
else {
parent->_left = cur;
}
cur->_parent = parent;
//让新插入结点指向父亲
while (parent && parent->_col == RED) {
Node* grandfather = parent->_parent;
if (parent = grandfather->_left) {
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED) {//uncle存在且为红
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上更新
cur = grandfather;
parent = cur->_parent;
}
else {//uncle不存在或者uncle为黑
if (cur == parent->_left) {
// g
// p
// c
RotateR(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else {
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else {// parent == grandfather->_right
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED) {//uncle存在且为红
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上更新
cur = grandfather;
parent = cur->_parent;
}
else {//uncle不存在或者uncle为黑
if (cur == parent->_right) {
// g
// p
// c
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else {
// g
// p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
//根节点必须为黑色
return true;
}
void RotateL(Node* parent) {//左旋
Node* cur = parent->_right;
Node* curleft = cur->_left;
parent->_right = curleft;
if (curleft) {
curleft->_parent = parent;
}
cur->_left = parent;
Node* ppnode = parent->_parent;
if (ppnode == nullptr) {
_root = cur;
cur->_parent = nullptr;
}
else {
if (ppnode->_left = parent) {
ppnode->_left = cur;
}
else {
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
void RotateR(Node* parent) {//右旋
Node* cur = parent->_left;
Node* curright = cur->_right;
parent->_left = curright;
if (curright) {
curright->_parent = parent;
}
cur->_right = parent;
Node* ppnode = parent->_parent;
parent->_parent = cur;
if (ppnode == nullptr) {
_root = cur;
cur->_parent = nullptr;
}
else {
if (ppnode->_left == parent) {
ppnode->_left = cur;
}
else {
ppnode->_right = cur;
}
cur->_parent = ppnode;
}
}
};
二、是否为红黑树的验证
1.IsBlance函数
cpp
bool IsBalance() {
return IsBalance(_root);
}
bool IsBalance(Node* root) {
if (root == nullptr) {
return true;
}
if (root->_col != BLACK) {
return false;
}//根节点一定为黑色
int benchmark = 0;
Node* cur = _root;
while (cur) {//算出最左边黑色结点的数目,为了与
//其他路径黑色结点的数目作比较
if (cur->_col == BLACK) {
benchmark++;
}
cur = cur->_left;
}
return CheckColor(root, 0, benchmark);
}
2.CheckColor函数
cpp
bool CheckColor(Node* root, int blacknum, int benchmark) {
if (root == nullptr) {
//root为空说明已经数完了一条路径的黑色结点
//与原先数的最左的黑色节点数进行比较
if (blacknum != benchmark) {
return false;
}
return true;
}
if (root->_col == BLACK) {
blacknum++;//当前路径黑色结点树++
}
if (root->_col == RED && root->_parent && root->_parent->_col == RED) {
cout << root->_kv.first << "出现连续红色节点" << endl;
//判断是否出现连续的红色结点
return false;
}
//递归式对左右子树分别检验
return CheckColor(root->_left, blacknum, benchmark) && CheckColor(root->_right, blacknum, benchmark);
}
三、红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多。