Python Opencv实践 - ORB特征匹配

参考资料:

ORB特征笔记_亦枫Leonlew的博客-CSDN博客

python opencv3 基于ORB的特征检测和 BF暴力匹配 knn匹配 flann匹配 - 知乎

Python OpenCV中的drawMatches()关键点匹配绘制方法详解_cv2.drawmatches_乔卿的博客-CSDN博客

复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img_car = cv.imread("../SampleImages/car.png", cv.IMREAD_COLOR)
img_carbody = cv.imread("../SampleImages/carbody.png", cv.IMREAD_COLOR)

#ORB特征提取
#参考资料:https://zhuanlan.zhihu.com/p/141360894
#1. 创建ORB对象
#   orb = cv.ORB_create()
orb = cv.ORB_create()

#2. 检测关键点,生成描述符
#   kp,des = orb.detectAndCompute(img, None)
#   img:原图
#   kp: 检测出的关键点
#   des:关键点描述符
keypoints_car,des_car = orb.detectAndCompute(img_car, None)
keypoints_carbody,des_carbody = orb.detectAndCompute(img_carbody, None)

#使用暴力匹配器进行特征匹配
#1. 创建暴力匹配器对象
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
#2. 使用匹配器的match方法进行特征匹配
matches = bf.match(des_car, des_carbody)
#3. 对结果进行排序,排序使用的参数是距离
matches = sorted(matches, key=lambda x: x.distance)

#绘制匹配项
#cv.drawMatches(	img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchesThickness[, matchColor[, singlePointColor[, matchesMask[, flags]]]]	) -> outImg
#img1:第一张原始图像。
#keypoints1:第一张原始图像的关键点。
#img2:第二张原始图像。
#keypoints2:第二张原始图像的关键点。
#matches1to2:从第一个图像到第二个图像的匹配,这意味着keypoints1[i]在keypoints2[Matches[i]中有一个对应的点。
#outImg:绘制结果图像。
#matchColor:匹配连线与关键点点的颜色,当matchColor==Scalar::all(-1) 时,代表取随机颜色。
#singlePointColor:没有匹配项的关键点的颜色,当singlePointColor==Scalar::all(-1) 时,代表取随机颜色。
#matchesMask:确定绘制哪些匹配项的掩码。如果掩码为空,则绘制所有匹配项。
#flags:绘图功能的一些标志。具体有:
#       cv.DRAW_MATCHES_FLAGS_DEFAULT
#       cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS
#       cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG
#       cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
#参考资料:https://blog.csdn.net/qq_41112170/article/details/124651286
img_match_result = cv.drawMatches(img_car, keypoints_car, img_carbody, keypoints_carbody, matches, None, flags=2)

plt.figure(figsize=(15,15))
plt.imshow(img_match_result[:,:,::-1])
相关推荐
love530love20 小时前
【笔记】Podman Desktop 部署 开源数字人 HeyGem.ai
人工智能·windows·笔记·python·容器·开源·podman
CoookeCola20 小时前
开源图像与视频过曝检测工具:HSV色彩空间分析与时序平滑处理技术详解
人工智能·深度学习·算法·目标检测·计算机视觉·开源·音视频
董厂长20 小时前
综述:deepSeek-OCR,paddle-OCR,VLM
人工智能·计算机视觉
gfdgd xi20 小时前
deepin 终端,但是版本是 deepin 15 的
linux·python·架构·ssh·bash·shell·deepin
禁默20 小时前
基于金仓KFS工具,破解多数据并存,浙人医改造实战医疗信创
数据库·人工智能·金仓数据库
CoovallyAIHub20 小时前
万字详解:多目标跟踪(MOT)终极指南
深度学习·算法·计算机视觉
云卓SKYDROID20 小时前
无人机动力学模块技术要点与难点
人工智能·无人机·材质·高科技·云卓科技
王六岁20 小时前
🐍 前端开发 0 基础学 Python 入门指南:条件语句篇
前端·python
java1234_小锋20 小时前
PyTorch2 Python深度学习 - 初识PyTorch2,实现一个简单的线性神经网络
开发语言·python·深度学习·pytorch2
胡萝卜3.020 小时前
C++面向对象继承全面解析:不能被继承的类、多继承、菱形虚拟继承与设计模式实践
开发语言·c++·人工智能·stl·继承·菱形继承·组合vs继承