Python数据分析从入门到进阶:玩转日期型数据(含代码)

引言

在我们进行一些时间序列问题时,往往要对日期型数据进行分析处理,本章介绍一下如何使用python处理日期型数据

💮1. 将字符串转换成日期

python 复制代码
# 导入相关库;
import pandas as pd 
import numpy as np
python 复制代码
# 创建字符串
date_strings = np.array(['03-04-2005 11:35 PM',
                         '23-05-2010 12:01 AM',
                         '04-09-2009 09:09 PM'])
python 复制代码
# 转换成datetime 类型的数据
[pd.to_datetime(date, format='%d-%m-%Y %I:%M %p') for date in date_strings]
sql 复制代码
[Timestamp('2005-04-03 23:35:00'),
 Timestamp('2010-05-23 00:01:00'),
 Timestamp('2009-09-04 21:09:00')]
python 复制代码
# 我们还可以增加errors参数来处理错误
# 转换成datetime类型的数据
[pd.to_datetime(date, format='%d-%m-%Y %I:%M %p', errors = 'coerce') for date in date_strings]
sql 复制代码
[Timestamp('2005-04-03 23:35:00'),
 Timestamp('2010-05-23 00:01:00'),
 Timestamp('2009-09-04 21:09:00')]

当传入errors = 'coerce' 参数时,即使转换错误也不会报错,但是会将错误的值返回为Nan(缺失值)

🏵️2. 处理时区

一般而言,pandas的对象默认是没有时区的,不过我们也可以在创建对象时通过tz参数指定时区

python 复制代码
import pandas as pd
python 复制代码
# 创建一个dataframe
pd.Timestamp('2017-05-01 06:00:00', tz = 'Europe/London')
ini 复制代码
Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')
python 复制代码
# 可以使用tz_locallize添加时区信息
data = pd.Timestamp('2017-05-01 06:00:00')
python 复制代码
# 设置时区
data_in_london = data.tz_localize('Europe/London')
python 复制代码
data_in_london
ini 复制代码
Timestamp('2017-05-01 06:00:00+0100', tz='Europe/London')
python 复制代码
# 我们还可以使用tz_convert来转换时区

data_in_london.tz_convert('Asia/Chongqing')
ini 复制代码
Timestamp('2017-05-01 13:00:00+0800', tz='Asia/Chongqing')
python 复制代码
# Series对象还可以对每一个元素应用tz_localiz和tz_convert
dates = pd.Series(pd.date_range('2002-02-02', periods=3, freq='M'))
python 复制代码
# 设置时区
dates.dt.tz_localize('Asia/Chongqing')
yaml 复制代码
0   2002-02-28 00:00:00+08:00
1   2002-03-31 00:00:00+08:00
2   2002-04-30 00:00:00+08:00
dtype: datetime64[ns, Asia/Chongqing]

🌹3. 选择日期和时间

python 复制代码
dataframe = pd.DataFrame()
python 复制代码
dataframe['date'] = pd.date_range('2001-01-01 01:00:00', periods=100000, freq='H')

删选两个日期之间的观察值, 用 & 来表示且的关系

python 复制代码
dataframe[(dataframe['date']>'2002-01-01 01:00:00') & (dataframe['date']<='2002-1-1 04:00:00')]

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }

| | date |
| 8761 | 2002-01-01 02:00:00 |
| 8762 | 2002-01-01 03:00:00 |

8763 2002-01-01 04:00:00

另一种方法,将date这一列设为索引,然后用loc删选

python 复制代码
dataframe = dataframe.set_index(dataframe['date'])
python 复制代码
dataframe.loc['2002-1-1 01:00:00':'2002-1-1 04:00:00']

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }

| | date |
| date | |
| 2002-01-01 01:00:00 | 2002-01-01 01:00:00 |
| 2002-01-01 02:00:00 | 2002-01-01 02:00:00 |
| 2002-01-01 03:00:00 | 2002-01-01 03:00:00 |

2002-01-01 04:00:00 2002-01-01 04:00:00

🌺4. 将数据切分成多个特征

python 复制代码
df = pd.DataFrame()
df['date'] = pd.date_range('1/1/2001', periods=150, freq='w')

创建年月日时分的特征

python 复制代码
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day'] = df['date'].dt.day
df['hour'] = df['date'].dt.hour
df['minute'] = df['date'].dt.minute
python 复制代码
df.head()

.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }

| | date | year | month | day | hour | minute |
| 0 | 2001-01-07 | 2001 | 1 | 7 | 0 | 0 |
| 1 | 2001-01-14 | 2001 | 1 | 14 | 0 | 0 |
| 2 | 2001-01-21 | 2001 | 1 | 21 | 0 | 0 |
| 3 | 2001-01-28 | 2001 | 1 | 28 | 0 | 0 |

4 2001-02-04 2001 2 4 0 0

🌻5.计算两个日期之间的时间差

python 复制代码
import pandas as pd
dataframe = pd.DataFrame()
dataframe['Arrived'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-04-2017')]
dataframe['left'] = [pd.Timestamp('01-01-2017'), pd.Timestamp('01-06-2017')]
python 复制代码
# 计算两个特征直接的时间间隔
dataframe['left'] - dataframe['Arrived']
ini 复制代码
0   0 days
1   2 days
dtype: timedelta64[ns]
相关推荐
冰糖猕猴桃1 小时前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
天水幼麟1 小时前
python学习笔记(深度学习)
笔记·python·学习
巴里巴气1 小时前
安装GPU版本的Pytorch
人工智能·pytorch·python
wt_cs1 小时前
银行回单ocr api集成解析-图像文字识别-文字识别技术
开发语言·python
_WndProc2 小时前
【Python】Flask网页
开发语言·python·flask
互联网搬砖老肖2 小时前
Python 中如何使用 Conda 管理版本和创建 Django 项目
python·django·conda
测试者家园2 小时前
基于DeepSeek和crewAI构建测试用例脚本生成器
人工智能·python·测试用例·智能体·智能化测试·crewai
大模型真好玩2 小时前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
前端付豪2 小时前
11、打造自己的 CLI 工具:从命令行到桌面效率神器
后端·python
前端付豪2 小时前
12、用类写出更可控、更易扩展的爬虫框架🕷
后端·python