一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 "Start" )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。
问总共有多少条不同的路径?
思路:dp[i][j] = dp[i-1]dp[j] + dp[ i] + dp[j-1], dp[i][j] = 0 when i=0 or j = 0. dp数组可优化为滚动数组
python,滚动数组
python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [1 for _ in range(n)]
for i in range(1, m):
for j in range(1,len(dp)):
dp[j] += dp[j-1]
return dp[-1]
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 "Start" )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
思路,转移方程与不同路径Ⅰ类似,但是要注意障碍物的存在,dp数组时,对应的位置置为0,且dp数组不会在这个位置上更新。初始第一行或第一列时,遇到障碍物后面的位置默认置零。
python:二维数组
python
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
return 0
dp = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0
dp[i][0] = 1
else:
break
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
Python:滚动数组
python
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
if obstacleGrid[0][0] == 1:
return 0
m, n = len(obstacleGrid), len(obstacleGrid[0])
dp = [0] * n
# 初始化第一行的路径数
for j in range(n):
if obstacleGrid[0][j] == 1:
break
dp[j] = 1
# 计算其他行的路径数,根据障碍物的dp数组修改优先级最高
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[0] = 0
for j in range(1, n):
if obstacleGrid[i][j] == 1:
dp[j] = 0
continue
dp[j] += dp[j - 1]
return dp[-1] # 返回最后一个元素,即终点的路径数