二维多孔介质图像的粒度分布研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

使用流域分割算法对岩石二维二值图像进行粒度分布的研究是一项重要的任务。粒度分布是指岩石样本中不同颗粒大小的分布情况,对于了解岩石的物理性质和工程行为具有重要意义。

在进行粒度分布研究时,首先需要获取岩石的二维二值图像。这可以通过采用现代高分辨率成像技术,如扫描电子显微镜(SEM)或计算机断层扫描(CT)等方法来实现。然后,使用流域分割算法对图像进行处理,将图像划分为不同的流域或区域,以便对每个区域的粒度进行分析。

流域分割算法是一种基于图像处理和计算机视觉技术的方法,可以将图像中的像素分成不同的区域,使得每个区域具有相似的特征。在岩石图像中,流域分割算法可以将不同类型的颗粒或孔隙分离出来,从而实现对不同颗粒大小的分析。

通过对每个流域或区域进行粒度分析,可以得到岩石样本中不同颗粒大小的分布情况。这可以通过计算每个区域中颗粒的面积或周长来实现。此外,还可以通过计算每个区域中颗粒的等效直径或体积来获得更详细的粒度信息。

粒度分布的研究对于岩石的物理性质和工程行为有着重要的影响。不同颗粒大小的分布情况可以反映岩石的孔隙结构、渗透性和强度等特性。例如,颗粒较大的区域通常具有较高的渗透性,而颗粒较小的区域则可能具有较高的强度。因此,通过粒度分布的研究,可以为岩石的工程设计和地质勘探提供重要的参考依据。

总之,使用流域分割算法对岩石二维二值图像进行粒度分布的研究是一项重要的任务。通过对每个区域进行粒度分析,可以获得岩石样本中不同颗粒大小的分布情况,从而为岩石的物理性质和工程行为提供重要的参考依据。

📚 2 运行结果

部分代码:

%Outputs

Average_grain_radius_micron=mean(R)

Standard_deviation_of_grain_radius_micron=std(R)

figure('units','normalized','outerposition',[0 0 1 1])

subplot(1,2,1)

RGB=label2rgb(Pr_L,'jet', 'w', 'shuffle');

imshow(RGB)

imwrite(RGB,'Output.png')

subplot(1,2,2)

Rel_Frequencies=hist(R,[1:round(max(R)/Bins):round(max(R))])./sum(sum(hist(R,[1:round(max(R)/Bins):round(max(R))])));

bar([1:round(max(R)/Bins):round(max(R))],Rel_Frequencies);

xlabel('Equivalent Grain Radius (micron)'); ylabel('Relative Frequency'); axis([1 max(R) 0 max(Rel_Frequencies)]); axis square;

annotation('textbox',[.2 .85 .1 .1], 'String', [ 'Average grain radius = ' num2str(Average_grain_radius_micron) ' micron'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

1\]Rabbani, A., Ayatollahi, S. (2015). Comparing three image processing algorithms to estimate the grain-size distribution of porous rocks from binary 2d images and sensitivity analysis of the grain overlapping degree. Special Topics \& Reviews in Porous Media: An International Journal 6 (1), 71-89. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
m0_571186606 小时前
第三十四周周报
人工智能
AI资源库6 小时前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni6 小时前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
kyle~6 小时前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm
xrgs_shz6 小时前
什么是LLM、VLM、MLLM、LMM?它们之间有什么关联?
人工智能·计算机视觉
DatGuy6 小时前
Week 36: 量子深度学习入门:辛量子神经网络与物理守恒
人工智能·深度学习·神经网络
说私域6 小时前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
千里马也想飞6 小时前
汉语言文学《朝花夕拾》叙事艺术研究论文写作实操:AI 辅助快速完成框架 + 正文创作
人工智能
玉梅小洋6 小时前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程
肾透侧视攻城狮6 小时前
《解锁计算机视觉:深度解析 PyTorch torchvision 核心与进阶技巧》
人工智能·深度学习·计算机视觉模快·支持的数据集类型·常用变换方法分类·图像分类流程实战·视觉模快高级功能