二维多孔介质图像的粒度分布研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

使用流域分割算法对岩石二维二值图像进行粒度分布的研究是一项重要的任务。粒度分布是指岩石样本中不同颗粒大小的分布情况,对于了解岩石的物理性质和工程行为具有重要意义。

在进行粒度分布研究时,首先需要获取岩石的二维二值图像。这可以通过采用现代高分辨率成像技术,如扫描电子显微镜(SEM)或计算机断层扫描(CT)等方法来实现。然后,使用流域分割算法对图像进行处理,将图像划分为不同的流域或区域,以便对每个区域的粒度进行分析。

流域分割算法是一种基于图像处理和计算机视觉技术的方法,可以将图像中的像素分成不同的区域,使得每个区域具有相似的特征。在岩石图像中,流域分割算法可以将不同类型的颗粒或孔隙分离出来,从而实现对不同颗粒大小的分析。

通过对每个流域或区域进行粒度分析,可以得到岩石样本中不同颗粒大小的分布情况。这可以通过计算每个区域中颗粒的面积或周长来实现。此外,还可以通过计算每个区域中颗粒的等效直径或体积来获得更详细的粒度信息。

粒度分布的研究对于岩石的物理性质和工程行为有着重要的影响。不同颗粒大小的分布情况可以反映岩石的孔隙结构、渗透性和强度等特性。例如,颗粒较大的区域通常具有较高的渗透性,而颗粒较小的区域则可能具有较高的强度。因此,通过粒度分布的研究,可以为岩石的工程设计和地质勘探提供重要的参考依据。

总之,使用流域分割算法对岩石二维二值图像进行粒度分布的研究是一项重要的任务。通过对每个区域进行粒度分析,可以获得岩石样本中不同颗粒大小的分布情况,从而为岩石的物理性质和工程行为提供重要的参考依据。

📚 2 运行结果

部分代码:

%Outputs

Average_grain_radius_micron=mean(R)

Standard_deviation_of_grain_radius_micron=std(R)

figure('units','normalized','outerposition',[0 0 1 1])

subplot(1,2,1)

RGB=label2rgb(Pr_L,'jet', 'w', 'shuffle');

imshow(RGB)

imwrite(RGB,'Output.png')

subplot(1,2,2)

Rel_Frequencies=hist(R,[1:round(max(R)/Bins):round(max(R))])./sum(sum(hist(R,[1:round(max(R)/Bins):round(max(R))])));

bar([1:round(max(R)/Bins):round(max(R))],Rel_Frequencies);

xlabel('Equivalent Grain Radius (micron)'); ylabel('Relative Frequency'); axis([1 max(R) 0 max(Rel_Frequencies)]); axis square;

annotation('textbox',[.2 .85 .1 .1], 'String', [ 'Average grain radius = ' num2str(Average_grain_radius_micron) ' micron'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]Rabbani, A., Ayatollahi, S. (2015). Comparing three image processing algorithms

to estimate the grain-size distribution of porous rocks from binary 2d images and

sensitivity analysis of the grain overlapping degree. Special Topics & Reviews in

Porous Media: An International Journal 6 (1), 71-89.

🌈4 Matlab代码实现

相关推荐
power-辰南18 分钟前
人工智能学习(四)之机器学习基本概念
人工智能·学习·机器学习
Him__41 分钟前
OpenAI发布最新推理模型o3-mini
人工智能·chatgpt·deepseek
梦云澜1 小时前
论文阅读(十):用可分解图模型模拟连锁不平衡
论文阅读·人工智能·深度学习
FL16238631291 小时前
马铃薯叶子病害检测数据集VOC+YOLO格式1332张9类别
人工智能·深度学习·机器学习
九亿AI算法优化工作室&2 小时前
GWO优化LSBooST回归预测matlab
人工智能·python·算法·机器学习·matlab·数据挖掘·回归
东锋1.33 小时前
Ollama 安装教程:轻松开启本地大语言模型之旅
人工智能
一只昀3 小时前
【产品经理学习案例——AI翻译棒出海业务】
人工智能·ai·产品经理
蓝染k9z4 小时前
在Ubuntu上使用Docker部署DeepSeek
linux·人工智能·ubuntu·docker·deepseek+
小李学AI4 小时前
基于YOLO11的遥感影像山体滑坡检测系统
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉·yolo11
笨小古4 小时前
保姆级教程:利用Ollama与Open-WebUI本地部署 DeedSeek-R1大模型
人工智能·deepseek