Pytorch-MLP-Mnist

文章目录

model.py

py 复制代码
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

class MLP_cls(nn.Module):
    def __init__(self,in_dim=28*28):
        super(MLP_cls,self).__init__()
        self.lin1 = nn.Linear(in_dim,128)
        self.lin2 = nn.Linear(128,64)
        self.lin3 = nn.Linear(64,10)
        self.relu = nn.ReLU()
        init.xavier_uniform_(self.lin1.weight)
        init.xavier_uniform_(self.lin2.weight)
        init.xavier_uniform_(self.lin3.weight)

    def forward(self,x):
        x = x.view(-1,28*28)
        x = self.lin1(x)
        x = self.relu(x)
        x = self.lin2(x)
        x = self.relu(x)
        x = self.lin3(x)
        x = self.relu(x)
        return x

main.py

py 复制代码
import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
import torch.optim as optim
from model import MLP_cls


seed = 42
torch.manual_seed(seed)
batch_size_train = 64
batch_size_test  = 64
epochs = 10
learning_rate = 0.01
momentum = 0.5
mlp_net = MLP_cls()

train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.5,), (0.5,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.5,), (0.5,))
                               ])),
    batch_size=batch_size_test, shuffle=True)

optimizer = optim.SGD(mlp_net.parameters(), lr=learning_rate,momentum=momentum)
criterion = nn.CrossEntropyLoss()

print("****************Begin Training****************")
mlp_net.train()
for epoch in range(epochs):
    run_loss = 0
    correct_num = 0
    for batch_idx, (data, target) in enumerate(train_loader):
        out = mlp_net(data)
        _,pred = torch.max(out,dim=1)
        optimizer.zero_grad()
        loss = criterion(out,target)
        loss.backward()
        run_loss += loss
        optimizer.step()
        correct_num  += torch.sum(pred==target)
    print('epoch',epoch,'loss {:.2f}'.format(run_loss.item()/len(train_loader)),'accuracy {:.2f}'.format(correct_num.item()/(len(train_loader)*batch_size_train)))



print("****************Begin Testing****************")
mlp_net.eval()
test_loss = 0
test_correct_num = 0
for batch_idx, (data, target) in enumerate(test_loader):
    out = mlp_net(data)
    _,pred = torch.max(out,dim=1)
    test_loss += criterion(out,target)
    test_correct_num  += torch.sum(pred==target)
print('loss {:.2f}'.format(test_loss.item()/len(test_loader)),'accuracy {:.2f}'.format(test_correct_num.item()/(len(test_loader)*batch_size_test)))

参数设置

bash 复制代码
'./data/' #数据保存路径
seed = 42 #随机种子
batch_size_train = 64
batch_size_test  = 64
epochs = 10

optim --> SGD
learning_rate = 0.01
momentum = 0.5

注意事项

初始化权重

这里使用这种方式

py 复制代码
        init.xavier_uniform_(self.lin1.weight)
        init.xavier_uniform_(self.lin2.weight)
        init.xavier_uniform_(self.lin3.weight)

如果发现loss和acc不变

检查一下是不是忘记写optimizer.step()了

关于数据下载

数据在download=True时,会下载在./data文件夹下

关于输出格式

这里用'xxx {:.2f}'.format(xxx),保留两位小数。注意中间的空格,区分:.2f和%2f

运行图

相关推荐
狗蛋不是狗几秒前
Python 实现的运筹优化系统代码详解(0-1规划背包问题)
python·数学建模·背包问题·0-1规划·狗蛋不是狗
硬水果糖7 分钟前
神经网络之损失函数
人工智能·深度学习·神经网络
xuebodx092312 分钟前
私有部署stable-diffusion-webui
图像处理·pytorch·ai作画·stable diffusion·视觉检测·transformer·dall·e 2
写代码的小王吧23 分钟前
【网络安全】 防火墙技术
java·python·安全·web安全·网络安全·docker
x66ccff27 分钟前
[特殊字符] Pandas 常用操作对比:Python 运算符 vs Pandas 函数
开发语言·python·pandas
小白的高手之路44 分钟前
torch.nn中的非线性激活介绍合集——Pytorch中的非线性激活
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
视觉语言导航1 小时前
华东师范地面机器人融合空中无人机视角的具身导航!KiteRunner:语言驱动的户外环境合作式局部-全局导航策略
人工智能·深度学习·机器人·无人机·具身智能
逆风优雅1 小时前
python 爬取网站图片的小demo
开发语言·python
码界筑梦坊1 小时前
基于Pyhon的京东笔记本电脑数据可视化分析系统
python·信息可视化·数据分析·毕业设计·电脑·销量预测
stevenzqzq1 小时前
kotlin中主构造函数是什么
开发语言·python·kotlin