图论第三天|130. 被围绕的区域、417. 太平洋大西洋水流问题、827. 最大人工岛

130. 被围绕的区域

文档讲解 :代码随想录 - 130. 被围绕的区域

状态:开始学习。

思路:

  • 步骤一: 深搜或者广搜将地图周边的 'O' 全部改成 'A' ,如图所示:
  • 步骤二: 再遍历地图,将 'O' 全部改成 'X' (地图中间的 'O' 改成了 'X' ),将 'A' 改回 'O' (保留的地图周边的'O'),如图所示:

本题代码(dfs):

cpp 复制代码
class Solution {
private:
    int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1}; // 保存四个方向
    void dfs(vector<vector<char>>& board, int x, int y) {
        board[x][y] = 'A';
        for (int i = 0; i < 4; i++) { // 向四个方向遍历
            int nextx = x + dir[i][0];
            int nexty = y + dir[i][1];
            // 超过边界
            if (nextx < 0 || nextx >= board.size() || nexty < 0 || nexty >= board[0].size()) continue;
            // 不符合条件,不继续遍历
            if (board[nextx][nexty] == 'X' || board[nextx][nexty] == 'A') continue;
            dfs (board, nextx, nexty);
        }
        return;
    }

public:
    void solve(vector<vector<char>>& board) {
        int n = board.size(), m = board[0].size(); 
        // 步骤一:
        // 从左侧边,和右侧边 向中间遍历
        for (int i = 0; i < n; i++) {
            if (board[i][0] == 'O') dfs(board, i, 0);
            if (board[i][m - 1] == 'O') dfs(board, i, m - 1);
        }

        // 从上边和下边 向中间遍历
        for (int j = 0; j < m; j++) {
            if (board[0][j] == 'O') dfs(board, 0, j);
            if (board[n - 1][j] == 'O') dfs(board, n - 1, j);
        }
        // 步骤二:
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (board[i][j] == 'O') board[i][j] = 'X';
                if (board[i][j] == 'A') board[i][j] = 'O';
            }
        }
    }
};

417. 太平洋大西洋水流问题

文档讲解 :代码随想录 - 417. 太平洋大西洋水流问题

状态:开始学习。

思路:

  1. 太平洋 的边上的节点 逆流而上,将遍历过的节点都标记上。
  2. 大西洋 的边上节点 逆流而长,将遍历过的节点也标记上。
  3. 然后两方都标记过的节点就是既可以流太平洋 也可以流大西洋的节点。

本题代码(dfs):

cpp 复制代码
class Solution {
private:
    int dir[4][2] = {-1, 0, 0, -1, 1, 0, 0, 1}; // 保存四个方向

    // 从低向高遍历,注意这里visited是引用,即可以改变传入的pacific和atlantic的值
    void dfs(vector<vector<int>>& heights, vector<vector<bool>>& visited, int x, int y) {
        if (visited[x][y]) return;
        visited[x][y] = true;
        for (int i = 0; i < 4; i++) { // 向四个方向遍历
            int nextx = x + dir[i][0];
            int nexty = y + dir[i][1];
            // 超过边界
            if (nextx < 0 || nextx >= heights.size() || nexty < 0 || nexty >= heights[0].size()) continue;
            // 高度不合适,注意这里是从低向高判断
            if (heights[x][y] > heights[nextx][nexty]) continue;

            dfs (heights, visited, nextx, nexty);
        }
        return;

    }

public:

    vector<vector<int>> pacificAtlantic(vector<vector<int>>& heights) {
        vector<vector<int>> result;
        int n = heights.size();
        int m = heights[0].size(); // 这里不用担心空指针,题目要求说了长宽都大于1

        // 记录从太平洋边出发,可以遍历的节点
        vector<vector<bool>> pacific = vector<vector<bool>>(n, vector<bool>(m, false));

        // 记录从大西洋出发,可以遍历的节点
        vector<vector<bool>> atlantic = vector<vector<bool>>(n, vector<bool>(m, false));

        // 从最上最下行的节点出发,向高处遍历
        for (int i = 0; i < n; i++) {
            dfs (heights, pacific, i, 0); // 遍历最上行,接触太平洋
            dfs (heights, atlantic, i, m - 1); // 遍历最下行,接触大西洋
        }

        // 从最左最右列的节点出发,向高处遍历
        for (int j = 0; j < m; j++) {
            dfs (heights, pacific, 0, j); // 遍历最左列,接触太平洋
            dfs (heights, atlantic, n - 1, j); // 遍历最右列,接触大西洋
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                // 如果这个节点,从太平洋和大西洋出发都遍历过,就是结果
                if (pacific[i][j] && atlantic[i][j]) result.push_back({i, j});
            }
        }
        return result;
    }
};

827. 最大人工岛

文档讲解 :代码随想录 - 827. 最大人工岛

状态:开始学习。

思路:

  • 步骤一: 一次遍历地图,得出各个岛屿的面积,并做编号记录。可以使用map 记录,key 为岛屿编号,value 为岛屿面积

  • 步骤二: 再遍历地图,遍历0的方格(因为要将0变成1),并统计该1(由0变成的1)周边岛屿面积,将其相邻面积相加在一起,遍历所有 0 之后,就可以得出 选一个0变成1 之后的最大 面积。

    本题代码(dfs):

cpp 复制代码
class Solution {
private:
    int count;
    int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 四个方向
    void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y, int mark) {
        if (visited[x][y] || grid[x][y] == 0) return; // 终止条件:访问过的节点 或者 遇到海水
        visited[x][y] = true; // 标记访问过
        grid[x][y] = mark; // 给陆地标记新标签
        count++;
        for (int i = 0; i < 4; i++) {
            int nextx = x + dir[i][0];
            int nexty = y + dir[i][1];
            if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 越界了,直接跳过
            dfs(grid, visited, nextx, nexty, mark);
        }
    }

public:
    int largestIsland(vector<vector<int>>& grid) {
        int n = grid.size(), m = grid[0].size();
        vector<vector<bool>> visited = vector<vector<bool>>(n, vector<bool>(m, false)); // 标记访问过的点
        unordered_map<int ,int> gridNum;
        int mark = 2; // 记录每个岛屿的编号
        bool isAllGrid = true; // 标记是否整个地图都是陆地
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (grid[i][j] == 0) isAllGrid = false;
                if (!visited[i][j] && grid[i][j] == 1) {
                    count = 0;
                    dfs(grid, visited, i, j, mark); // 将与其链接的陆地都标记上 true
                    gridNum[mark] = count; // 记录每一个岛屿的面积
                    mark++; // 记录下一个岛屿编号
                }
            }
        }
        if (isAllGrid) return n * m; // 如果都是陆地,返回全面积

        // 以下逻辑是根据添加陆地的位置,计算周边岛屿面积之和
        int result = 0; // 记录最后结果
        unordered_set<int> visitedGrid; // 标记访问过的岛屿
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                int count = 1; // 记录连接之后的岛屿数量
                visitedGrid.clear(); // 每次使用时,清空
                if (grid[i][j] == 0) {
                    for (int k = 0; k < 4; k++) {
                        int neari = i + dir[k][1]; // 计算相邻坐标
                        int nearj = j + dir[k][0];
                        if (neari < 0 || neari >= grid.size() || nearj < 0 || nearj >= grid[0].size()) continue;
                        if (visitedGrid.count(grid[neari][nearj])) continue; // 添加过的岛屿不要重复添加
                        // 把相邻四面的岛屿数量加起来
                        count += gridNum[grid[neari][nearj]];
                        visitedGrid.insert(grid[neari][nearj]); // 标记该岛屿已经添加过
                    }
                }
                result = max(result, count);
            }
        }
        return result;
    }
};
相关推荐
The_Ticker14 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
爪哇学长1 小时前
双指针算法详解:原理、应用场景及代码示例
java·数据结构·算法
Dola_Pan1 小时前
C语言:数组转换指针的时机
c语言·开发语言·算法
繁依Fanyi1 小时前
简易安卓句分器实现
java·服务器·开发语言·算法·eclipse
烦躁的大鼻嘎1 小时前
模拟算法实例讲解:从理论到实践的编程之旅
数据结构·c++·算法·leetcode
C++忠实粉丝2 小时前
计算机网络socket编程(4)_TCP socket API 详解
网络·数据结构·c++·网络协议·tcp/ip·计算机网络·算法
用户37791362947552 小时前
【循环神经网络】只会Python,也能让AI写出周杰伦风格的歌词
人工智能·算法
福大大架构师每日一题2 小时前
文心一言 VS 讯飞星火 VS chatgpt (396)-- 算法导论25.2 1题
算法·文心一言
EterNity_TiMe_2 小时前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
机器学习之心3 小时前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer