03目标检测-传统方法与深度学习算法对比

目录

一、目标学习的检测方法变迁及对比

二、深度学习目标检测算法基本流程

三、传统目标检测算法VS深度学习目标检测算法


一、目标学习的检测方法变迁及对比

"目标检测"是当前计算机视觉和机器学习领域的研究热点。从Viola-Jones Detector、DPM等冷兵器时代的智慧到当今RCNN、YOLO等深度学习土壤孕育下的GPU暴力美学,整个目标检测的发展可谓是计算机视觉领域的一部浓缩史。整个目标检测的发展历程已经总结在了下图中:

可以看出,在2012年之前,在目标检测领域还是以传统手工特征的检测算法为主,但是随着卷积神经网络(CNN)在2012年的兴起,目标检测开始了在深度学习下的暴力美学。在深度学习下,目标检测的效果比传统手工特征效果好太多。直至今日,基于深度学习的检测算法依然是目标检测的主流。

二、深度学习目标检测算法基本流程

流程一:

给定一张待检测图片,将这张图片作为检测算法的输入,然后对图片采用滑动窗口方式进行进行候选框的提取,然后对每个候选框中的图像进行特征提取(特征的提取主要基于前面的前置知识中介绍方式提取),并用分类器进行特征分类的判定,得到一系列的当前检测目标的候选框,这些候选框可能存在重叠的状况,此时使用非极大值抑制算法NMS对候选框进行合并或过滤,得到的最后的候选框就是最终的检测目标即输出结果。

流程二:

给定一张图片作为输入,采用特征提取+目标框回归的方法来进行目标区域的提取,最后同样利用NMS进行候选框的合并,最终得到目标输出结果。

注意:

  • 流程一:适用于传统的目标检测方法和基于深度学习的目标检测方法
  • 流程二:适用于基于深度学习的目标检测方法

三、传统目标检测算法VS深度学习目标检测算法

|--------------|----------------|
| 传统目标检测算法 | 深度学习目标检测算法 |
| 手动设计特征 | 深度网络学习特征 |
| 滑动窗口 | Proposal或者直接回归 |
| 传统分类器 | 深度网络 |
| 多步骤 | 端到端 |
| 准确度和实时性差 | 准确度高和实时性好 |

上一篇: 02目标检测-传统检测方法

下一篇:04目标检测-Two-stage的目标检测算法

相关推荐
用户5191495848456 分钟前
探秘C#伪随机数生成器的安全漏洞与破解之道
人工智能·aigc
小糖学代码11 分钟前
LLM系列:1.python入门:2.数值型对象
人工智能·python·ai
gs8014023 分钟前
Ascend 服务器是什么?(Ascend Server / 昇腾服务器)
运维·服务器·人工智能
csdn_aspnet30 分钟前
AI赋能各类主流编程语言
人工智能·ai·软件开发
CodeNerd影39 分钟前
RAG文件检索增强(基于吴恩达课程)
人工智能
阿里云大数据AI技术1 小时前
一行代码,让Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
人工智能
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(前三章综合问答)
人工智能·笔记·学习
霍格沃兹测试学院-小舟畅学1 小时前
告别误判:基于n8n构建你的AI输出安全测试护盾
人工智能
阿乔外贸日记1 小时前
中国汽车零配件出口企业情况
大数据·人工智能·智能手机·云计算·汽车
LCG米1 小时前
[OpenVINO实战] 在边缘设备上运行Stable Diffusion,实现离线文生图
人工智能·stable diffusion·openvino