图像处理项目_自定义边缘检测函数

图像处理项目

项目简介

这个项目主要关注图像处理技术,包括但不限于边缘检测、图像二值化,分辨率,灰度量化在线处理等。项目采用Python语言和OpenCV库,为图像处理提供了高效和灵活的解决方案。

功能列表

图像二值化:使用全局阈值将图像转换为二值图像。

边缘检测:提供多种度量标准,包括L1、L2和基于连通性的方法。

代码分析

图像二值化 - binarize_image

这个函数负责将输入图像转换为灰度图像(如果还不是),然后使用阈值127进行二值化。

python 复制代码
def binarize_image(image):
    if len(image.shape) == 3:
        image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    threshold = 127
    _, binary_image = cv2.threshold(image, threshold, 255, cv2.THRESH_BINARY)
    return binary_image

4连通和8连通 - four_connected 和 eight_connected

这两个函数分别返回一个点的4连通和8连通邻居。

python 复制代码
def four_connected(x, y):
    return [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]

def eight_connected(x, y):
    return [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1),
            (x - 1, y - 1), (x + 1, y + 1), (x - 1, y + 1), (x + 1, y - 1)]

边缘检测 - detect_edges

这个函数实现了基于不同度量标准的边缘检测。

l1: 使用Canny边缘检测

l2: 使用Laplacian边缘检测

基于连通性的度量(4连通和8连通)

python 复制代码
def detect_edges(image, metric):
    binary_image = binarize_image(image)
    edges = np.zeros_like(binary_image, dtype=np.uint8)

    height, width = binary_image.shape

    inner_func = eight_connected if metric == '内部点8连通,轮廓点4连通' else four_connected
    edge_func = four_connected if metric == '内部点8连通,轮廓点4连通' else eight_connected

    for x in range(1, height - 1):
        for y in range(1, width - 1):
            pixel = binary_image[x, y]

            inner_neighbors = inner_func(x, y)
            is_inner = all(
                0 <= i < height and 0 <= j < width and binary_image[i, j] == pixel for i, j in inner_neighbors)

            if is_inner:
                continue

            edge_neighbors = edge_func(x, y)
            is_edge = any(0 <= i < height and 0 <= j < width and binary_image[i, j] != pixel for i, j in edge_neighbors)

            if is_edge:
                edges[x, y] = 255  # Set the edge pixel to white

    return edges

如何使用

Flask== 2.3.3

opencv-python== 4.6.0

numpy== 1.23.4

确保安装了Python和OpenCV。

导入项目代码。

使用detect_edges函数进行边缘检测。

联系方式

GitHub

相关推荐
顾道长生'2 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
要努力啊啊啊8 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
熊猫钓鱼>_>11 小时前
用Python解锁图像处理之力:从基础到智能应用的深度探索
开发语言·图像处理·python
BIYing_Aurora12 小时前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
CHANG_THE_WORLD12 小时前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉
云天徽上13 小时前
【PaddleOCR】OCR常见关键信息抽取数据集,包含FUNSD、XFUND、WildReceipt等整理,持续更新中......
人工智能·计算机视觉·信息可视化·paddlepaddle·paddleocr·文本识别
lx74160269815 小时前
cd-agent更换cd模型(自用)
计算机视觉
阿蒙Amon15 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频
慕婉030716 小时前
OpenCV图像边缘检测
人工智能·opencv·计算机视觉