第26章_瑞萨MCU零基础入门系列教程之独立看门狗定时器-IWDT

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=728461040949

配套资料获取:https://renesas-docs.100ask.net

瑞萨MCU零基础入门系列教程汇总https://blog.csdn.net/qq_35181236/article/details/132779862


第26章 独立看门狗定时器-IWDT

本章目标

  • 了解A6M5处理器的看门狗定时器及其工作原理;
  • 学会使用RASC配置看门狗定时器,使用其接口函数;

26.1 RA6M5的WDT外设

26.1.1 WDT的特性

IWDT (Independent Watchdog Timer)由一个14位的向下计数器组成,可以将应用程序从错误中恢复处理(比如重启系统)。应用程序必须在允许的计数窗口内进行刷新计时器,如果计数器下溢了,IWDT将复位MCU或生成不可屏蔽中断(NMI)。

瑞萨RA6M5处理器的看门狗定时器的特性见下表:

独立看门狗的时钟源是一个独立的时钟IWDTCLK,PCLKB最大的时钟频率是15kHz,可以使用RASC在BSP中设置IWDTCLK的分频系数。

26.1.2 IWDT的系统框图

IWDT的系统框图如下图所示:

26.1.3 IWDT和WDT的异同

  1. 差异点

瑞萨RA6M5的独立看门狗(IWDT)与看门狗(WDT)的不同点如下:

  • 时钟源不一样,WDT使用外部时钟电路作为时钟源,而IWDT自带时钟源;
  • WDT有寄存器启动和自启动两种模式,IWDT只有自启动这一种模式;
  1. 相同点

独立看门狗(IWDT)与看门狗(WDT)也有很多相似点,主要如下:

  • 都可以选择复位的范围(窗口值);
  • 都可以设置在睡眠模式下是否启动;
  • 都可以设置NMI中断和复位重启;

26.1.4 IWDT的工作原理

  1. 超时时间计算

以IWDTCLK=15kHz为例,假设对IWDT进行了以下配置:

  • 分频系数位256
  • 超时时间周期为2048cycles

那么IWDT的超时时间为:

  1. 运行状态分析

在"Option Function Select Register 0"寄存器中,对于IWDT有一个模式选择位[OFS0.IWDTSTRT]:它被写为0时,IWDT的自动启动模式被使能;写为1就是关闭IWDT的计数。

只有在复位状态下,以下对IWDT在OFS0中的设置才会有效:

  • 配置OFS0.IWDTCKS[3:0]来配置IWDT的时钟分频系数;
  • 配置OFS0.IWDTRPSS[1:0]和OFS0.IWDTRPES[1:0]来设置IWDT的窗口监测始末位置;
  • 配置OFS0.IWDTTOPS[1:0]来设置IWDT的超时周期值cycles;
  • 配置OFS0.IWDTRSTIRQS来使能IWDT的重置输出和中断请求;

当复位状态结束后,IWDT的计数器将会立刻向下计数。在RA6M5的用户手册中展示了一个IWDT的窗口刷新例图:

总结下来就是:

  • 在窗口期内刷新看门狗会让IWDT计数器重新计数且不会触发任何事件或中断;
  • 在没有到窗口期起始位置刷新会触发刷新错误事件,并触发NMI中断;
  • 在超过窗口结束位置但是计数没有溢出期间刷新,会触发刷新错误事件,并触发NMI中断;
  • 如果IWDT计数溢出了,会触发技术溢出事件,触发NMI中断;

也就是说,如果使用了窗口监测,只有在窗口期刷新定时器才会让系统正常运行,否则都会触发NMI中断。

26.2 IWDT模块的使用

26.2.1 模块配置

  1. 添加IWDT Stack

在FSP的Stacks中添加IWDT模块的步骤如下图所示:

  1. 在BSP中配置IWDT

从前文对IWDT的工作原理分析中可以看到,对于IWDT的所有操作都是在OFS0寄存器中进行配置的,而OFS0是在BSP板块里面的"RA6F5 Family"中,如下图所示:

  • Start Mode Select:IWDT启动模式选择

1.1 IWDT is automatically activated after a reset (Autostart mode)(自启动)

1.2 IWDT is Disabled

  • Timeout Period:IWDT计数周期值

1.1 128 cycles

1.2 512 cycles

1.3 1024 cycles

1.4 2048 cycles

  • Dedicated Clock Frequency Divisor:IWDT时钟分频系数(1/16/32/64/128/256),默认128;
  • Window End Position:窗口监测结束位置,默认0%,没有结束位置
  • Window Start Position:窗口监测开始位置,默认100%,没有开始位置
  • Reset Interrupt Request:选择使能触发复位的中断请求(NMI或Reset)
  • Stop Control:停止对WDT控制的条件

1.1 Stop counting when in Sleep, Snooze mode, or Software Standby

1.2 Counting continues (Note: Device will not enter Deep Standby Mode when selected. Device will enter Software Standby Mode)

如果用户选择使用了NMI中断,还需要去RASC的Stacks中找到IWDG Stack模块,设置NMI的中断回调函数名,如下图所示:

26.2.2 配置信息解读

在RASC中配置IWDT并生成工程后,会在hal_data.c中生成结构体全局常量g_iwdt,它被用来表示IWDT设备,代码如下:

c 复制代码
const wdt_instance_t g_wdt =
{
    .p_ctrl        = &g_iwdt_ctrl,
    .p_cfg         = &g_iwdt_cfg,
    .p_api         = &g_wdt_on_iwdt
};
  • p_ctrl:iwdt_instance_ctrl_t类型指针成员,用来记录设备状态,记录一些重要信息(比如回调函数);
  • p_cfg:指向IWDT的配置结构体,这个结构体的数值来自在RASC中对IWDT的配置,代码如下:
c 复制代码
const wdt_cfg_t g_iwdt_cfg =
{
    .timeout = 0,
    .clock_division = 0,
    .window_start = 0,
    .window_end = 0,
    .reset_control = 0,
    .stop_control = 0,
    .p_callback = nmi_callback,
};
  • p_api:指向了一个wdt_api_t结构体,这个结构体在r_iwdt.c中实现,它封装了IWDT设备的接口函数,代码如下:
c 复制代码
const wdt_api_t g_wdt_on_iwdt =
{
    .open        = R_IWDT_Open,
    .refresh     = R_IWDT_Refresh,
    .statusGet   = R_IWDT_StatusGet,
    .statusClear = R_IWDT_StatusClear,
    .counterGet  = R_IWDT_CounterGet,
    .timeoutGet  = R_IWDT_TimeoutGet,
    .callbackSet = R_IWDT_CallbackSet,
};

26.2.3 中断回调函数

在RASC中配置了IWDT的中断回调函数名字,会在hal_data.h中声明此回调函数:

c 复制代码
#ifndef nmi_callback
void nmi_callback(wdt_callback_args_t * p_args);
#endif

用户需要实现这个回调函数,例如:

c 复制代码
void nmi_callback(wdt_callback_args_t * p_args)
{
    (void)p_args;
}

26.2.4 API接口及其用法

前文已经说过,在FSP库函数中是使用wdt_api_t结构体来封装IWDT的操作方法,原型如下:

c 复制代码
typedef struct st_wdt_api
{
    fsp_err_t (* open)(wdt_ctrl_t * const p_ctrl, wdt_cfg_t const * const p_cfg);
    fsp_err_t (* refresh)(wdt_ctrl_t * const p_ctrl);
    fsp_err_t (* statusGet)(wdt_ctrl_t * const p_ctrl, wdt_status_t * const p_status);
    fsp_err_t (* statusClear)(wdt_ctrl_t * const p_ctrl, const wdt_status_t status);
    fsp_err_t (* counterGet)(wdt_ctrl_t * const p_ctrl, uint32_t * const p_count);
    fsp_err_t (* timeoutGet)(wdt_ctrl_t * const p_ctrl, 
                             wdt_timeout_values_t * const p_timeout);
    fsp_err_t (* callbackSet)(wdt_ctrl_t * const p_api_ctrl, 
                              void (* p_callback)(wdt_callback_args_t *),
                              void const * const p_context, 
                              wdt_callback_args_t * const p_callback_memory);
} wdt_api_t;

瑞萨在r_iwdt.c中实现一个wdt_api_t结构体,IWDT和WDT共用一套操作接口,读者请参考《25.2.4 API接口及其用法》了解这些函数的用法。

26.3 独立看门狗定时器实验

26.3.1 设计目的

让用户学会使用瑞萨RA6M5的IWDT,并观察是否刷新看门狗的现象。

26.3.2 硬件连接

本实验会用到板载串口和按键,请读者参考前文配置。

26.3.3 驱动程序

  1. 初始化IWDT

调用open函数即可初始化IWDT,并启动它,代码如下:

c 复制代码
void IWDTDrvInit(void)
{
    fsp_err_t err = g_iwdt.p_api->open(g_iwdt.p_ctrl, g_iwdt.p_cfg);
    assert(FSP_SUCCESS == err);
}
  1. 刷新IWDT

刷新IWDT比较简单,直接调用其refresh函数即可:

c 复制代码
void IWDTDrvRefresh(void)
{
    fsp_err_t err = g_iwdt.p_api->refresh(g_iwdt.p_ctrl);
    assert(FSP_SUCCESS == err);
}
  1. NMI中断回调函数

在RASC中使能了IWDT的NMI中断,需要自己实现NMI回调函数,代码如下:

c 复制代码
__WEAK void DataSaveProcess(void)
{
}
void nmi_callback(wdt_callback_args_t * p_args)
{
    (void)p_args;
    printf("\r\nWarning!Do your most important save working!!\r\n");
    DataSaveProcess();
}
  1. 按键刷新定时器

在按键消抖处理后,刷新看门狗定时器,代码如下:

c 复制代码
void KeyProcessEvents(void)
{
    struct IODev *ptLedDev = IOGetDecvice("UserLed");
    struct IODev *ptKeyDev = IOGetDecvice("UserKey");
    ptLedDev->Write(ptLedDev, ptKeyDev->Read(ptKeyDev));
    IWDTDrvRefresh();
}

26.3.4 测试程序

在本次实验中,初始化了各个外设后,主循环中不用做任何事情,所有的操作都是在中断中完成的:

  • 按键中断
  • 滴答定时器消除按键抖动
  • NMI中断处理用户的紧急事件

测试函数代码如下:

c 复制代码
void IWDTAppTest(void)
{
    SystickInit();
    UARTDrvInit();
    
    struct IODev *ptdev = IOGetDecvice("UserKey");
    if(NULL != ptdev)
        ptdev->Init(ptdev);
    ptdev = IOGetDecvice("UserLed");
    if(NULL != ptdev)
        ptdev->Init(ptdev);
    
    IWDTDrvInit();
    
    while(1)
    {
        /* The code that is watched by iwdt */
    }
}

26.3.5 测试结果

将编译出来的二进制可执行文件烧录到板子上并运行,如果不按按键的话会得到例如下图这样的打印信息:


本章完

相关推荐
scan126 分钟前
单片机串口接收状态机STM32
stm32·单片机·串口·51·串口接收
Qingniu011 小时前
【青牛科技】应用方案 | RTC实时时钟芯片D8563和D1302
科技·单片机·嵌入式硬件·实时音视频·安防·工控·储能
深圳市青牛科技实业有限公司2 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
Mr.谢尔比3 小时前
电赛入门之软件stm32keil+cubemx
stm32·单片机·嵌入式硬件·mcu·信息与通信·信号处理
LightningJie3 小时前
STM32中ARR(自动重装寄存器)为什么要减1
stm32·单片机·嵌入式硬件
西瓜籽@4 小时前
STM32——毕设基于单片机的多功能节能窗控制系统
stm32·单片机·课程设计
远翔调光芯片^138287988726 小时前
远翔升压恒流芯片FP7209X与FP7209M什么区别?做以下应用市场摄影补光灯、便携灯、智能家居(调光)市场、太阳能、车灯、洗墙灯、舞台灯必看!
科技·单片机·智能家居·能源
极客小张7 小时前
基于STM32的智能充电桩:集成RTOS、MQTT与SQLite的先进管理系统设计思路
stm32·单片机·嵌入式硬件·mqtt·sqlite·毕业设计·智能充电桩
m0_7393128710 小时前
【STM32】项目实战——OV7725/OV2604摄像头颜色识别检测(开源)
stm32·单片机·嵌入式硬件
嵌入式小章10 小时前
基于STM32的实时时钟(RTC)教学
stm32·嵌入式硬件·实时音视频