数据结构——四叉树

四叉树(Quadtree)是一种用于表示和管理二维空间的树状数据结构。它将二维空间递归地分割成四个象限,每个象限可以继续分割,以实现对空间的更精细的划分。四叉树通常用于解决空间搜索和查询问题,例如碰撞检测、图像压缩、地理信息系统等领域。

特别适合大规模的广阔室外场景管理。一般来说如果游戏场景是基于地形的(甚至没有高度)(如城市、平原、2D场景),那么适合用四叉树来管理。而如果游戏场景在高度轴上也有大量物体需要管理(如太空、高山),那么适合用八叉树来管理。

cpp 复制代码
#include <iostream>

// 定义二维点的结构体
struct Point {
    float x;
    float y;
    Point(float _x, float _y) : x(_x), y(_y) {}
};

// 定义四叉树节点
struct QuadTreeNode {
    Point point;
    QuadTreeNode* topLeft;
    QuadTreeNode* topRight;
    QuadTreeNode* bottomLeft;
    QuadTreeNode* bottomRight;

    QuadTreeNode(Point _point) : point(_point), topLeft(nullptr), topRight(nullptr), bottomLeft(nullptr), bottomRight(nullptr) {}
};

class QuadTree {
private:
    QuadTreeNode* root;
    int maxDepth; // 最大深度

    // 在指定深度下递归插入节点
    QuadTreeNode* insert(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return new QuadTreeNode(point);
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            node->bottomLeft = insert(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            node->bottomRight = insert(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            node->topLeft = insert(node->topLeft, point, depth + 1);
        } else {
            node->topRight = insert(node->topRight, point, depth + 1);
        }

        return node;
    }

    // 在指定深度下递归搜索节点
    bool search(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return false;
        }

        if (node->point.x == point.x && node->point.y == point.y) {
            return true;
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            return search(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            return search(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            return search(node->topLeft, point, depth + 1);
        } else {
            return search(node->topRight, point, depth + 1);
        }
    }

public:
    QuadTree(float minX, float minY, float maxX, float maxY, int depth) : root(nullptr), maxDepth(depth) {}

    // 插入一个点
    void insert(Point point) {
        root = insert(root, point, 0);
    }

    // 搜索一个点是否存在
    bool search(Point point) {
        return search(root, point, 0);
    }
};

int main() {
    QuadTree quadtree(0.0f, 0.0f, 100.0f, 100.0f, 4); // 创建四叉树,定义边界和最大深度

    Point point1(10.0f, 20.0f);
    Point point2(80.0f, 90.0f);

    quadtree.insert(point1); // 插入点1
    quadtree.insert(point2); // 插入点2

    Point searchPoint(80.0f, 90.0f);
    bool found = quadtree.search(searchPoint); // 搜索点2
    if (found) {
        std::cout << "Point found in the quadtree." << std::endl;
    } else {
        std::cout << "Point not found in the quadtree." << std::endl;
    }

    return 0;
}
相关推荐
CodeClimb2 分钟前
【华为OD-E卷-木板 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
odng5 分钟前
IDEA自己常用的几个快捷方式(自己的习惯)
java·ide·intellij-idea
CT随12 分钟前
Redis内存碎片详解
java·开发语言
brrdg_sefg21 分钟前
gitlab代码推送
java
做梦敲代码25 分钟前
达梦数据库-读写分离集群部署
数据库·达梦数据库
hanbarger44 分钟前
mybatis框架——缓存,分页
java·spring·mybatis
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
苹果醋31 小时前
2020重新出发,MySql基础,MySql表数据操作
java·运维·spring boot·mysql·nginx
小蜗牛慢慢爬行1 小时前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
azhou的代码园1 小时前
基于JAVA+SpringBoot+Vue的制造装备物联及生产管理ERP系统
java·spring boot·制造