数据结构——四叉树

四叉树(Quadtree)是一种用于表示和管理二维空间的树状数据结构。它将二维空间递归地分割成四个象限,每个象限可以继续分割,以实现对空间的更精细的划分。四叉树通常用于解决空间搜索和查询问题,例如碰撞检测、图像压缩、地理信息系统等领域。

特别适合大规模的广阔室外场景管理。一般来说如果游戏场景是基于地形的(甚至没有高度)(如城市、平原、2D场景),那么适合用四叉树来管理。而如果游戏场景在高度轴上也有大量物体需要管理(如太空、高山),那么适合用八叉树来管理。

cpp 复制代码
#include <iostream>

// 定义二维点的结构体
struct Point {
    float x;
    float y;
    Point(float _x, float _y) : x(_x), y(_y) {}
};

// 定义四叉树节点
struct QuadTreeNode {
    Point point;
    QuadTreeNode* topLeft;
    QuadTreeNode* topRight;
    QuadTreeNode* bottomLeft;
    QuadTreeNode* bottomRight;

    QuadTreeNode(Point _point) : point(_point), topLeft(nullptr), topRight(nullptr), bottomLeft(nullptr), bottomRight(nullptr) {}
};

class QuadTree {
private:
    QuadTreeNode* root;
    int maxDepth; // 最大深度

    // 在指定深度下递归插入节点
    QuadTreeNode* insert(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return new QuadTreeNode(point);
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            node->bottomLeft = insert(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            node->bottomRight = insert(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            node->topLeft = insert(node->topLeft, point, depth + 1);
        } else {
            node->topRight = insert(node->topRight, point, depth + 1);
        }

        return node;
    }

    // 在指定深度下递归搜索节点
    bool search(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return false;
        }

        if (node->point.x == point.x && node->point.y == point.y) {
            return true;
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            return search(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            return search(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            return search(node->topLeft, point, depth + 1);
        } else {
            return search(node->topRight, point, depth + 1);
        }
    }

public:
    QuadTree(float minX, float minY, float maxX, float maxY, int depth) : root(nullptr), maxDepth(depth) {}

    // 插入一个点
    void insert(Point point) {
        root = insert(root, point, 0);
    }

    // 搜索一个点是否存在
    bool search(Point point) {
        return search(root, point, 0);
    }
};

int main() {
    QuadTree quadtree(0.0f, 0.0f, 100.0f, 100.0f, 4); // 创建四叉树,定义边界和最大深度

    Point point1(10.0f, 20.0f);
    Point point2(80.0f, 90.0f);

    quadtree.insert(point1); // 插入点1
    quadtree.insert(point2); // 插入点2

    Point searchPoint(80.0f, 90.0f);
    bool found = quadtree.search(searchPoint); // 搜索点2
    if (found) {
        std::cout << "Point found in the quadtree." << std::endl;
    } else {
        std::cout << "Point not found in the quadtree." << std::endl;
    }

    return 0;
}
相关推荐
黄焖鸡能干四碗8 分钟前
智慧教育,智慧校园,智慧安防学校建设解决方案(PPT+WORD)
java·大数据·开发语言·数据库·人工智能
敲上瘾12 分钟前
Docker 存储卷(Volume)核心概念、类型与操作指南
linux·服务器·数据库·docker·容器·架构
神里流~霜灭15 分钟前
(C++)数据结构初阶(顺序表的实现)
linux·c语言·数据结构·c++·算法·顺序表·单链表
lssjzmn16 分钟前
Spring Web 异步响应实战:从 CompletableFuture 到 ResponseBodyEmitter 的全链路优化
java·前端·后端·springboot·异步·接口优化
DemonAvenger20 分钟前
MySQL内存优化:缓冲池与查询缓存调优实战指南
数据库·mysql·性能优化
RationalDysaniaer25 分钟前
了解etcd
数据库·etcd
new_daimond29 分钟前
二级缓存在实际项目中的应用
java
一只乔哇噻36 分钟前
java后端工程师进修ing(研一版 || day41)
java·开发语言·学习·算法
正在走向自律37 分钟前
国产时序数据库选型指南-从大数据视角看透的价值
大数据·数据库·清华大学·时序数据库·iotdb·国产数据库
Pocker_Spades_A39 分钟前
Python快速入门专业版(十五):数据类型实战:用户信息录入程序(整合变量、输入与类型转换)
数据库·python