2614. 对角线上的质数-c语言解法

给你一个下标从 0 开始的二维整数数组 nums 。

返回位于 nums 至少一条 对角线 上的最大 质数 。如果任一对角线上均不存在质数,返回 0 。

注意:

复制代码
如果某个整数大于 1 ,且不存在除 1 和自身之外的正整数因子,则认为该整数是一个质数。
如果存在整数 i ,使得 nums[i][i] = val 或者 nums[i][nums.length - i - 1]= val ,则认为整数 val 位于 nums 的一条对角线上。

在上图中,一条对角线是 [1,5,9] ,而另一条对角线是 [3,5,7] 。

示例 1:

输入:nums = [[1,2,3],[5,6,7],[9,10,11]]

输出:11

解释:数字 1、3、6、9 和 11 是所有 "位于至少一条对角线上" 的数字。由于 11 是最大的质数,故返回 11 。

示例 2:

输入:nums = [[1,2,3],[5,17,7],[9,11,10]]

输出:17

解释:数字 1、3、9、10 和 17 是所有满足"位于至少一条对角线上"的数字。由于 17 是最大的质数,故返回 17 。

解题代码如下:

c 复制代码
int judge(int a){
    if(a==1){
        return 0;
    }
   for(int i=2;i*i<=a;i++){
       if(a%i==0){
           return 0;

       }
   }
   return 1;
}

int diagonalPrime(int** nums, int numsSize, int* numsColSize){
    int an=-1;
    int col=numsColSize[0];
    for(int i=0;i<numsSize;i++){
        if(judge(nums[i][i])){
            if(nums[i][i]>an){
                an=nums[i][i];
            }
        }
    }
    for(int i=0;i<numsSize;i++){
        if(judge(nums[i][col-i-1])){
            if(nums[i][col-i-1]>an){
                an=nums[i][col-i-1];
            }
        }
    }
    if(an!=-1){
        return an;
    }
    return 0;


}
相关推荐
逻辑留白陈1 小时前
Adaboost进阶:与主流集成算法对比+工业级案例+未来方向
算法
Learn Beyond Limits1 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
天选之女wow2 小时前
【代码随想录算法训练营——Day28】贪心算法——134.加油站、135.分发糖果、860.柠檬水找零、406.根据身高重建队列
算法·leetcode·贪心算法
Gohldg2 小时前
C++算法·贪心例题讲解
c++·数学·算法·贪心算法
远远远远子2 小时前
类与对象 --1
开发语言·c++·算法
Aaplloo2 小时前
【无标题】
人工智能·算法·机器学习
西望云天2 小时前
The 2024 ICPC Asia Nanjing Regional Contest(2024南京区域赛EJKBG)
数据结构·算法·icpc
无敌最俊朗@2 小时前
C/C++ 关键关键字面试指南 (const, static, volatile, explicit)
c语言·开发语言·c++·面试
10岁的博客2 小时前
容器化安装新玩法
算法
不会算法的小灰2 小时前
HTML简单入门—— 基础标签与路径解析
前端·算法·html