pytorch的卷积层池化层和非线性变化 和机器学习线性回归

卷积层:

两个输出的情况 就会有两个通道 可以改变通道数的

最简单的神经网络结构:

nn.Mudule就是继承父类

super执行的是 先执行父类函数里面的

forward执行的就是前向网络,就是往前推进的,当然也有反向转播,那就是用来就gradient dicent了,求导计算了。

卷积后的结果展示:

这里有个小细节

224 *244输出 224 *224 肯定是加了padding的,如何算出这个padding 官网给了公式

这个一般用不到,写论文科研可以再去官网查看

下面介绍池化层

mxpool是下采样,mxunpool是上采样,dilation是空洞卷积,ceil------mode来保留,用来对应下面情况

最大池化操作,这里有一点要注意,stride(每次核移动的步进)默认为卷积核一样大小

池化的直观感受就是变模糊了,保留了数据的主要特征,减小了数据量。

下面介绍非线性:

inplace如果是1的话就是替换input,如果是flase的话,就是把输出用另一个变量来承接

一般来说是要false的,保留以前的数据嘛

下面是使用sigmoid函数进行的非线性处理

插播stm32学习的:

陀螺仪原理:

下面介绍机器学习线性回归的问题:

x就是各种已知道的特征,这就是回归任务的第一步,线性回归

,这是实际值

第二步 就是我有label 和feartures 用函数预测出预测label,比较好坏。选出比较规则。

利用梯度下降,第三步找到最好loss

这种情况看人品?no 线性回归不需要担心,永远是第一种情况

梯度下降的算法:

用二次拟合更好的model:

或者更高的次来拟合更好的model 和更低的loss:

直到你用更高次的model来拟合,train 的结果更高了,但是test的结果更差了,这个就是过拟合了overfitting了

这个时候我们还要考虑:有时候只考虑一种feature肯定是不够的

用冲激函数来乘 来做选择,考虑多种feature

把全部能想象到的参数都加进去,因为我们不知道有哪些参数是影响的,这样做,我们在train上可以得到很低,但是又可能会过拟合!做到这里,还可以回到第二步,定义model的好坏。第二部只考虑的了预测值的error,regularization是加上额外的wi

要求参数越小越好,降低敏感度,提高函数的平滑性!

也不可以太平滑了,就相当于一个水平线,啥也干不成。调整朗木达来调整,为什么朗木达里面没有加上b?因为调整b的大小根本没用

总结:一个输出和多个feature有关,不过我们不确定那些有影响,就会overfiting,可以用正则化来平滑函数

相关推荐
武子康4 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
二哈喇子!5 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
少林码僧6 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
春日见6 小时前
控制算法:PP(纯跟踪)算法
linux·人工智能·驱动开发·算法·机器学习
Yeats_Liao6 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
gorgeous(๑>؂<๑)7 小时前
【中科院-张启超组-AAAI26】WorldRFT: 用于自动驾驶的带强化微调的潜在世界模型规划
人工智能·机器学习·自动驾驶
UnderTurrets7 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3648 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
高洁018 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
山土成旧客9 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法
pytorch·python·学习