pytorch的卷积层池化层和非线性变化 和机器学习线性回归

卷积层:

两个输出的情况 就会有两个通道 可以改变通道数的

最简单的神经网络结构:

nn.Mudule就是继承父类

super执行的是 先执行父类函数里面的

forward执行的就是前向网络,就是往前推进的,当然也有反向转播,那就是用来就gradient dicent了,求导计算了。

卷积后的结果展示:

这里有个小细节

224 *244输出 224 *224 肯定是加了padding的,如何算出这个padding 官网给了公式

这个一般用不到,写论文科研可以再去官网查看

下面介绍池化层

mxpool是下采样,mxunpool是上采样,dilation是空洞卷积,ceil------mode来保留,用来对应下面情况

最大池化操作,这里有一点要注意,stride(每次核移动的步进)默认为卷积核一样大小

池化的直观感受就是变模糊了,保留了数据的主要特征,减小了数据量。

下面介绍非线性:

inplace如果是1的话就是替换input,如果是flase的话,就是把输出用另一个变量来承接

一般来说是要false的,保留以前的数据嘛

下面是使用sigmoid函数进行的非线性处理

插播stm32学习的:

陀螺仪原理:

下面介绍机器学习线性回归的问题:

x就是各种已知道的特征,这就是回归任务的第一步,线性回归

,这是实际值

第二步 就是我有label 和feartures 用函数预测出预测label,比较好坏。选出比较规则。

利用梯度下降,第三步找到最好loss

这种情况看人品?no 线性回归不需要担心,永远是第一种情况

梯度下降的算法:

用二次拟合更好的model:

或者更高的次来拟合更好的model 和更低的loss:

直到你用更高次的model来拟合,train 的结果更高了,但是test的结果更差了,这个就是过拟合了overfitting了

这个时候我们还要考虑:有时候只考虑一种feature肯定是不够的

用冲激函数来乘 来做选择,考虑多种feature

把全部能想象到的参数都加进去,因为我们不知道有哪些参数是影响的,这样做,我们在train上可以得到很低,但是又可能会过拟合!做到这里,还可以回到第二步,定义model的好坏。第二部只考虑的了预测值的error,regularization是加上额外的wi

要求参数越小越好,降低敏感度,提高函数的平滑性!

也不可以太平滑了,就相当于一个水平线,啥也干不成。调整朗木达来调整,为什么朗木达里面没有加上b?因为调整b的大小根本没用

总结:一个输出和多个feature有关,不过我们不确定那些有影响,就会overfiting,可以用正则化来平滑函数

相关推荐
Forrit4 小时前
ptyorch安装
pytorch
九河云7 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
pp起床9 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
Rorsion10 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航10 小时前
K-means
人工智能·机器学习·kmeans
Jay Kay11 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
小鸡吃米…11 小时前
机器学习面试问题及答案
机器学习
Yeats_Liao12 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
断眉的派大星13 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
Tadas-Gao13 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm