机器学习 day35(决策树)

  1. 决策树
  • 上图的数据集是一个特征值X采用分类值,即只取几个离散值,同时也是一个二元分类任务,即标签Y只有两个值
  • 上图为之前数据集对应的决策树,最顶层的节点称为根节点,椭圆形节点称为决策节点,矩形节点称为叶子节点
  • 决策树学习算法的工作是,在所有可能的决策树中,选择一个在训练集上能表现良好,并能很好的推广到新数据(即交叉验证集和测试集)的决策树
  1. 决策树的学习过程
  • 在构建决策树的过程中,有几个关键决定
  • 决定一:如何选择特征作为每一个节点?决策树算法通过最大化纯度来选择特征作为节点,从而对数据集进行拆分
  • 决定二:什么时候停止拆分?当某个节点处的数据的纯度为100%时,当拆分某个节点后会导致决策树超过最大深度时,当拆分节点后对纯度影响太小时,当某个节点的示例数量太少时
  • 根节点的深度为0,停止拆分的原因是为了确保我们的树不会变得太大和太笨重,保持树很小,就不太容易过拟合
相关推荐
星浩AI3 分钟前
Google 官方发布:让你的 AI 编程助手"边写、边看、边调",像人类开发者一样工作
人工智能·后端·开源
Codebee25 分钟前
SkillFlow:回归本质的AI能力流程管控
人工智能
巫山老妖43 分钟前
2026 年 AI 趋势深度研究报告
人工智能
CodeLove·逻辑情感实验室1 小时前
深度解析:当 NLP 试图解构爱情——情感计算(Affective Computing)的伦理边界与技术瓶颈
人工智能·深度学习·自然语言处理·赛朋克
少林码僧1 小时前
2.9 字段分箱技术详解:连续变量离散化,提升模型效果的关键步骤
人工智能·ai·数据分析·大模型
互联网工匠1 小时前
从冯·诺依曼架构看CPU和GPU计算的区别
人工智能·gpu算力
爱笑的眼睛111 小时前
超越可视化:降维算法组件的深度解析与工程实践
java·人工智能·python·ai
GISer_Jing2 小时前
AI Agent 目标设定与异常处理
人工智能·设计模式·aigc
Fnetlink12 小时前
AI+零信任:关键基础设施安全防护新范式
人工智能·安全
njsgcs2 小时前
SIMA2 论文阅读 Google 任务设定器、智能体、奖励模型
人工智能·笔记